Home › Forums › Implantology › In-Office Custom Abutments and Long-Term Provisionals
Welcome Dear Guest
To create a new topic please register on the forums. For help contact : discussdentistry@hotmail.com
- This topic has 3 replies, 2 voices, and was last updated 12/02/2012 at 5:36 pm by Anonymous.
-
AuthorPosts
-
12/02/2012 at 5:33 pm #10343AnonymousOnlineTopics: 0Replies: 1149Has thanked: 0 timesBeen thanked: 1 time
In-Office Custom Abutments and Long-Term Provisionals
When using a cementable crown, implant prosthetics require that an abutment head be placed between the implant fixture and crown. Several abutment head choices are available and can be divided into stock abutments and custom abutments. Stock abutments are prefabricated, provided by the manufacturer, and used as is or may require height alteration. Conversely, a custom abutment is customized for that particular site in the patient, requiring a margin to be placed corresponding to the gingival margin and changes to the angulation and height. There is confusion among practitioners as to what “is” a custom abutment.
Provisionalization of these abutments may be necessary when the final crown is not delivered at the time the abutment is placed. This may be because of a need to segmentally treat the arch or alter the aesthetics and occlusion before completing the treatment.
This article will address the means to create custom in-office abutments and long-term provisionals using a moldable light-cured resin material. The provisional technique presented reduces fabrication costs while still providing a high-quality and durable result.CUSTOM ABUTMENTS
Custom abutments may be fabricated by several methods. Traditionally, UCLA abutments were used to fabricate custom abutments. This involved adding wax to the plastic chimney of the UCLA abutment, followed by casting. This gave the dental laboratory technician the ability to control the emergence profile and the abutment’s height and angulation. More recently, CAD/CAM technology has permitted custom abutments to be created virtually and then milled from solid titanium. This provides a stronger abutment for the cast UCLA-type abutments. A UCLA abutment is fabricated from a gold component with a cast portion, which has a lower melting temperature than the gold component. Retention of the 2 components is mechanical, and separation can occur under load if the cast portion is too thin at the gold component.12/02/2012 at 5:33 pm #15176AnonymousFigure 1. Stock abutments on the implant analogs on the soft-tissue model.
Figure 2. Abutment Preparation Burs (Kit 4475 [KOMET USA]) with gross reduction carbides on the left, and finishing carbides on the right of the kit.
In today’s economic environment, laboratory costs can play a factor in acceptance of treatment. A difference of a few hundred dollars may be the decision point for some patients. Additionally, this also plays a factor when dealing with PPO insurance plans that often set the allowable fee at, or below, a UCLA or CAD/CAM abutment laboratory fee as charged to the practitioner. With this in mind, in-office custom abutment fabrication can provide a high-quality abutment at a lower cost, allowing the clinician to work within the patient’s financial and/or insurance boundaries. As a comparison, an in-office custom milled abutment will typically have a cost range between $75 and $100 (depending on the manufacturer). Whereas, the laboratory fee for a UCLA abutment is typically in the $250 range and a CAD/CAM can be more than $325 per abutment.
Before the introduction of the UCLA abutment, the only abutment available was a stock abutment, which either the dental laboratory technician or practitioner would mill; this was done chairside, or on a model creating a customized abutment. Today, this is still offered in some circumstances, and manufacturers have developed what are termed “milling abutments” to allow this to be offered in more situations. A milling abutment is essentially a solid abutment that has bulk added to it. This allows one to change angles as needed when creating a custom abutment, something that may not be possible with a standard stock abutment (Figure 1). Until recently, executing this process in the office was a challenge, as the rotary instruments we had at our disposal to fit our high-speed handpieces did not efficiently cut titanium. Friction-grip carbides in a titanium abutment adjustment kit (Figure 2). Abutments (kit 4475 [KOMET USA]) are now available specifically for shaping (black ring, golden shank) and finishing (red ring) titanium. This can be accomplished either intraorally, or extraorally. The author recommends that, unless minor customization is required, it is better to customize the abutments extraorally. This article will now address the steps for extraoral abutment customization using milling abutments.12/02/2012 at 5:34 pm #15177AnonymousIN-OFFICE EXTRAORAL CUSTOM ABUTMENT FABRICATION
When significant abutment customization is needed, it is easier to create the abutment extraorally versus attempting to do so intraorally. This is especially true if a milling abutment is going to be used, as these require more metal be removed. The process starts with an implant impression and fabrication of a soft-tissue model. To fabricate a soft-tissue model in the office, place the analog on the impression head within the impression and inject Soft-Tissue Moulage (Kerr Lab) 3 mm around the analog’s crestal and allow to set. A stone model is then poured and models are articulated (Figure 3).
Figure 3. Occlusal view of the stock titanium abutments showing nonparallelism.
Figure 4. Anterior view of the stock abutments on the soft-tissue model showing nonparallelism.
Figure 5. The abutments are reduced using the cross-cut carbides to indicate the gingival margin and parallelism.
Figure 6. Soft-tissue removed, casts occluded to check occlusal reduction and margins have been refined.
Figure 7. Occlusal view showing parallelism of the abutments with circumferential margins.
Figure 8. View of the abutments showing parallelism.
Figure 9. Occluded view of the finished custom abutments. Figure 10. Buccal view of the finished abutment heads.
Figure 11. Lingual view of the finished abutment heads.
Figure 12. Occlusal view of the finished abutment heads showing circumferential margins.
Figure 13. Intraoral buccal view of the custom abutments.
Figure 14. Intraoral lingual view of the custom abutments.
12/02/2012 at 5:36 pm #15178AnonymousThe milling abutment is placed into the soft-tissue model. Then the fixation screw is tightened to “finger tightness” so that the milling vibration does not cause the abutment to move on the model (Figures 4 to 6). The gross-reduction carbide (H847KRG.FG.018 [KOMET USA]) is used to reduce the occlusal surface. This is done so that the buccal and lingual edge of the abutment, which will become the cusp tips of the custom abutment, have sufficient clearance (2 mm is recommended), allowing the restoration be placed over it (Figure 7). When occlusal clearance is achieved, the gross-reduction football carbide (H379G.FG.023 [KOMET USA]) is then used to create buccal and lingual inclines on the occlusal surface (Figure 8). This is necessary so that the laboratory can create anatomy in the final crown and provide sufficient clearance.
The tapered gross-reduction carbides (either the H856G.FG in 016/018 or H847KRG.FG in 016/018 [KOMET USA]) are used to reduce the interproximal to the level of the soft-tissue margin (Figure 9). This is also performed on the buccal and lingual surfaces (Figure 10). It is not necessary to perform a full reduction on these surfaces during this step, but it helps when you mark where the gingival margin is on the cast. The abutment(s) are marked with a permanent marker, indicating the buccal, and then the abutment is removed from the model. The soft-tissue material is removed from the cast, and the abutment is returned to the model, making sure it is positioned correctly with the buccal mark. The gross-reduction carbides are then used to reduce the circumferential surfaces, positioning the final margin approximately 0.5 mm apical to the mark created when the soft-tissue material was present. The benefit of working on the model is that it can be rotated in any direction and viewed from any angle so you can create the ideal preparation. Convergence of the preparation walls at approximately 6° should be the objective, giving the crown maximum retention to the abutment.
The gross reduction carbides provide a rough surface, which will be difficult to capture in an impression because of surface tension between the impression material and the abutment’s surface. For this reason, the surface needs to have some finishing performed. Matching the gross-reduction carbides in the kit are titanium finishing carbides (H375R.FG.016/018, H336.FG.016/018, and H379.FG.023 [KOMET USA]). These are used to remove the rough marks on the titanium surface (Figure 11).
The abutments are now ready for insertion into the patient (Figures 12 to 14). Provisional crowns may be fabricated on the abutments on the soft-tissue model, before the patient visit or on the soft-tissue model with the custom abutments on them. Both can be sent to the laboratory to have the final crowns created and delivered during the same appointment as the abutments. The impression heads and analog can be recycled, using them for subsequent patients after proper sterilization. -
AuthorPosts
- You must be logged in to reply to this topic.