Home › Forums › Endodontics & conservative dentistry › Class 2 composite restoration › Class 2 composite restoration
POLISHING TRIAGE
First of all, it is imperative that the dental hygienist makes an evaluation regarding the polishing environment and situation, ie, conduct a polishing triage determining exactly why you are polishing any particular restoration. Polishing to smooth down a rough surface? Smoothing down a margin? Removing plaque? Removing extrinsic stain on the restoration? Restoring shine and luster to a dull surface? Is there a true “reason” to polish? You may wish to consider selective polishing as a viable option.1
RESTORATIVE MATERIALS
Not only is determining why you are polishing important, it is also important to know what dental material you are polishing. Quite simply, different polishing pastes will have a different effect on different materials. Aesthetic indirect all-ceramic materials fall into 2 general categories: composite or porcelain (ceramic).
Composite, or resin-based materials, are mechanically polished to a shine. Also, the filler particle size of the composite is directly related to the optimal surface luster. Normal particle size can range from 0.04 to 1 µm, affecting the material’s potential to achieve a high shine. Fillers may be made of resin, glass, or silica; or a combination of these. Composite resin materials require regular care to maximize their longevity simply because they are not as strong in comparison to the strength that porcelain materials possess. Composites are also a viable direct restorative choice in the dental office.2
Table 2. Ranking System of Mohs as to Hardness Value | ||||||||||||||||||||
|
With porcelain materials, an enamel glaze is baked on the surface of the restoration to provide a smooth glossy/shiny surface. Advances in dental technology offer more ceramic/nonmetallic options. The use of computer-aided design/computer-aided manufacturing systems has enhanced the availability of aesthetic choices, whether restorations are fabricated in the office or in the dental laboratory. For example, in the laboratory, copings can be milled out of zirconium oxide, and porcelain can be pressed (or layered) onto the substructure. Options for crowns and veneers include layered/stackable feldspar-based porcelains or pressed-ceramic utilizing the lost wax technique. Pressed ceramic can include materials such as leucite glass-ceramic and lithium disilicate glass-ceramic. Strength is gained once the porcelain restorations are bonded to the tooth structure.3 It is important for the hygienist to be aware of the interface between the tooth structure and the restoration, as it can stain and abrade more readily. Also, it is pertinent for the hygienist to help maintain a smooth glasslike surface to the restorations. Any roughness will attract bacteria and stain, contributing to a less aesthetic appearance, and possibly compromising the integrity of the restoration itself