Re: Paper point technique

Home Forums Endodontics & conservative dentistry Paper point technique Re: Paper point technique

#17657
DrsumitraDrsumitra
Offline
Registered On: 06/10/2011
Topics: 238
Replies: 542
Has thanked: 0 times
Been thanked: 0 times

Some ideas are accepted and pursued more readily than others. As an example, the concept of man flying was not taken seriously until modern times. From Da Vinci’s conceptual illustrations to the Wright brothers’ accomplishments, centuries elapsed. Significant technological advances have produced both the space shuttle, and the hang glider. It took longer to get Da Vinci’s “hang glider” in the air than a rocket. Today’s hang glider works because it has borrowed and modified advanced technology.

Scientific and technological advances in endodontics have allowed the use of simple devices in sophisticated ways. Today we can routinely use paper points to determine the length of a canal.1 This is possible because of modern instrumentation techniques and nickel-titanium files of greater taper.

While the paper point may seem like Da Vinci’s hang glider when compared with digital radiography or an apex locater, it gives more accurate information about canal length and shape than any other technique available (Figures 1 through 4). The accuracy of paper point measurements also allows for the elimination of working films while improving the technical quality of the endodontics performed (Figure 5).

Achieving technical endodontic excellence is largely dependent upon knowing two variables: (1) at what length the cavosurface of the canal is, and (2) the minimum apical foramen diameter (MAFD) at that length. Knowing these variables allows the dentist to have excellent control of the root canal system. The length to the cavosurface of the canal can be determined to within 1/4 mm accuracy using the paper point technique, a technique that does not require measurement radiographs.

Radiographs and apex locators are used to estimate the working length of canals. When estimates of length and MAFD are made, the quality of endodontic procedures will inherently vary. Accurate knowledge of canal length and MAFD can be used to produce consistent high-quality results. This two-part article will attempt to illustrate an approach that can be used to improve the quality and consistency of endodontic procedures

DEFINITIONS

Before discussing a more accurate way to ascertain the variables required for optimum control of endodontic procedures and outcomes without working films, some definitions are needed.

Let the cavosurface of the canal be defined as a plane that bisects the root at a point comprised of the most coronal position of the apical foramen where the internal surface of the canal meets the external surface of the root. This point is now considered to be at the most apical portion of the canal, and no other points on the plane are more coronal to it (Figure 6). It is not important to know if this cavosurface plane bisects cementum or dentin or both. The importance is in knowing where the demarcation of internal canal, and external root, exists (Figures 7 and 8).

Endodontics is successful when an environment is created that will allow the immune system to function to repair injury. We only need to treat what is inside the canal. All points that are located apical to the cavosurface of the canal can be considered to be in contact with the immune system. All points coronal to the plane of the cavosurface are considered to be relatively inaccessible to the immune system, and should be treated with proper endodontic therapy.

Obturation materials only need to be placed inside the canal to its cavosurface margin. By knowing where the endpoint for treatment exists (the cavosurface), better control can be developed in instrumentation and obturation of the root canal system. Improved control goes hand in hand with improved quality in all areas of dentistry.

The minimal apical foramen diameter also needs to be defined. It is the smallest cross-sectional length of the apical foramen at the cavosurface of the canal along the path taken during instrumentation that can be determined with gauging files. In the rare instances where the cavosurface of the canal is at the anatomic and radiographic apex of the root, and the apical foramen is a perfect circle, the MAFD would be the diameter of the apical foramen (Figure 9). In most instances the MAFD will consist of the two closest points on a plane that represent the cavosurface of the canal. There will be many wider areas on this plane, such as an elliptical or irregularly shaped foramen (Figure 10).

How can these determinations of length and MAFD be made without radiographs? With digital radiography, taking a working film—whether a measurement, cone fit, or obturation check film—only takes seconds, and has never been easier. Why choose to abandon these images and the information they contain? How can it be said that better care could be delivered without them?

For me the motive to change the way canal measurements were obtained arose because the results that were achieved using the information obtained from radiographs, the electric apex locator, and tactile sensation were not as consistent as desired. Often the results were beautiful. Sometimes, even with relatively simple teeth like maxillary central incisors, the results were substandard, usually an unsightly overfill, indicating a lack of awareness of the specific anatomy and an inability to control treatment in a simple root canal system. The ability to consistently, reproducibly, and accurately transform the information from radiographs, the apex locator, and tactile sensation into technically excellent endodontics fell short too often, creating anxious moments while waiting to view the postoperative radiographs. Working diligently and only producing an inferior result, coupled with not understanding what precipitated the undesirable outcome, make for a very frustrating endodontic experience. An explanation for these inconsistent results was needed. Endodontic treatment needs to be performed with great consistency in order to ensure a high predictability of results—our patients are counting on this.

OUR TRADITION

Traditionally, radiographs have been used to determine the length of the canal. We know from many studies that this method is inaccurate.2 The difference between the radiographic apex (RA) and the cavosurface of the canal can be significant. Because of the inherent shortcomings with radiographic length determination (Figures 11 through 14) it has been suggested by some authors that working a certain distance short from the RA will result in a satisfactory working length. The distance to be subtracted from the RA is based on studies where the average distance of the apical foramen from the RA has been measured. Then an average length discrepancy with a standard deviation is determined.

The problem with this approximation technique is that the teeth we treat are not average, but very unique. A working length that is determined based on statistical research may fall within the standard deviation. However, the chances of getting an accurate canal length by using statistical averages and standard deviations are remote. One length does not fit most canals. The estimated length will always either be long or short of the true cavosurface of the root. At best this technique should be considered length approximation, certainly not length determination.

In order to avoid over- instrumentation and overfilling, most of us were taught to work short of the radiographic apex. This philosophy does not address the entire root canal system (Figure 15). Treating short also contributes to canal ledging and blockages, leaving substrate in the canal for bacteria to cause later problems.

Many of us were taught to rely on radiographs and statistics for length “approximation.” Many believe that radiographic measurements are the standard of care, or because of cognitive dissonance have chosen to overlook the shortcomings of this technique.

The standard of care is what a reasonable and prudent practitioner would do. School curricula or textbooks do not dictate the standard of care. The standard of care evolves as advances in the field occur. Endodontic treatment can routinely be performed without working radiographs and consistently produce results that meet, if not exceed, the standard of care.

INCORPORATING NEWER TECHNOLOGY WITH LONGSTANDING TRADITIONS

A new level of accuracy in length determination over radiographs has been achieved with the electronic apex locator (EAL). The EAL is free of the problems that visual interpretation of two-dimensional radiographs present. With the EAL there is no chance for our eyes to misinterpret the information that the EAL presents. Unfortunately, the EAL is not 100% accurate, and may be perceived as difficult to use. Even though the EAL is not infallible, it is more accurate than radiographs.

For those of us who find it difficult to use an EAL there is a new product, the “Endo Q” (Acadental) (Figure 16), that will dramatically decrease the learning curve for mastering this device. I have found that when using the “endo Q” in the hands-on courses I teach in my office, the participants experience a dramatically accelerated learning curve.

When the EAL indicates that the apex has been reached, it means that the very tip of the file is protruding through the foramen. Repeatedly taking larger instruments (greater than a 15 or 20 K file, depending on the curvature of the canal and the hardness of the dentin) past this length will lead to transportation of the apical foramen, commonly known as zipping the apex. The EAL does not accurately reveal where the canal ends and the extra-radicular structures (the PDL, bone, granulation tissue, cyst) begin. It does not accurately reveal where to terminate treatment of the RCS.

With the EAL a similar problem that radiographs present recurs—to what distance from the EAL reading should we work? Again, studies have been done that give information in terms of average length discrepancies between the EAL reading and direct observation.7 An average distance with a standard deviation is determined, and adjustments to working length are made accordingly. Again, the problem is in using averages and applying them to unique situations. Most of the time the length selected will be incorrect, either too short or too long.

An example of a situation where using averages is inappropriate would be when a patient is treated with IV sedation, when titration of medications is required for safety and effect. The response to medications follows a bell curve. Individuals will either be hyper responders, hypo responders, or somewhere in between. Unfortunately, preoperatively it is not known how an individual will respond. Giving an average dose of an anxiolytic agent to a hyper responder can result in a dangerous situation. The same dose given to a hypo responder will be ineffective. Titration is imperative in this situation for maximum safety and effect.

In endodontics there also exists a bell curve with canal lengths. Use of radiographs or the EAL combined with measurement adjustments based on average length discrepancy studies inherently results in working lengths that are excessive or insufficient, but seldom just right. Unfortunately, with these measurement techniques we don’t know which canals will be treated long, short, or just right until the final film is viewed.

Our patients expect us to treat their unique anatomy. We don’t usually place crowns based on averages. We make a unique crown for each individually prepared tooth, and we must use the same approach in endodontic treatment.