Home › Forums › Oral Diagnosis & Medicine › dry mouth › dry mouth
Will oral health providers one day be able to scout for evidence of systemic disease in the time it takes to clean a patient’s teeth? It’s an ever-likely scenario, according to those at the forefront of salivary diagnostics research.
Clinical discoveries published in recent years have advanced the odds of salivary diagnostics becoming a chairside tool that could enhance the ability of dental practitioners to detect a spectrum of medical conditions.
Scientists working with saliva samples obtained from a group of Indian patients, for example, were able to validate the ability of portable electromechanical biosensor hardware technology to simultaneously analyze oral fluids for biomarkers thought to signal the pathogenesis of oral cancer (Clinical Cancer Research, July 1, 2009, Vol. 15:13, pp. 4446-4452).
A similar device developed by scientists and engineers in California sits at the cusp of commercialization (Annals of the New York Academy of Science, March 2007, Vol. 1098, pp. 401-410). The prototype Oral Fluid Nanosensor Test (OFNASET) awaits regulatory approval, with two contract manufacturing organizations waiting in the wings to begin commercialization.
And numerous studies funded by the National Institutes of Health (NIH) and others in 2009 and 2010 have pushed the salivary diagnostics envelope to its most advanced position yet, with molecular biomarkers being identified to monitor the systemic creep of breast, ovarian, pancreatic, and lung cancers.
And these advances represent just a portion of the salivary diagnostics portfolio. Combinations of analytes found in whole and ductal saliva are being characterized in ways that allow investigators to view them as molecular “proxies” for a host of systemic or systemic-related conditions, including periodontal infection, diabetes, human immunodeficiency virus (HIV), hepatitis, and cardiovascular disease.
In addition, investigators continue to refine ways to link the basic investigative tools of molecular biology — such as mass spectrometry and microarray analysis — with microfluidics and nanotechnology engineering, enabling them to develop portable salivary assay platforms for use in the dental operatory. If myriad challenges associated with regulatory approval, licensing, commercialization, and third-party reimbursement can be met, oral care providers may one day soon find themselves offering diagnostic health services that can identify life-threatening conditions.