infection control guidelines for dentists

Home Forums MISCELLANEOUS POSTS MISCELLANEOUS POSTS infection control guidelines for dentists infection control guidelines for dentists

#16503
drsnehamaheshwaridrsnehamaheshwari
Offline
Registered On: 16/03/2013
Topics: 110
Replies: 239
Has thanked: 0 times
Been thanked: 0 times
Gloves and Gloving
DHCP wear gloves to prevent contamination of their hands when touching mucous membranes, blood, saliva, or OPIM, and also to reduce the likelihood that microorganisms present on the hands of DHCP will be transmitted to patients during surgical or other patient-care procedures. Medical gloves, both patient examination and surgeon’s gloves, are manufactured as single-use disposable items that should be used for only one patient, then discarded. Gloves should be changed between patients and when torn or punctured.
Wearing gloves does not eliminate the need for handwashing. Hand hygiene should be performed immediately before donning gloves. Gloves can have small, unapparent defects or can be torn during use, and hands can become contaminated during glove removal. These circumstances increase the risk of operative wound contamination and exposure of the DHCP’s hands to microorganisms from patients. In addition, bacteria can multiply rapidly in the moist environments underneath gloves, and thus, the hands should be dried thoroughly before donning gloves and washed again immediately after glove removal.
Types of Gloves
Because gloves are task-specific, their selection should be based on the type of procedure to be performed (e.g., surgery or patient examination). Sterile surgeon’s gloves must meet standards for sterility assurance established by FDA and are less likely than patient examination gloves to harbor pathogens that could contaminate an operative wound. Appropriate gloves in the correct size should be readily accessible.
Glove Integrity
Limited studies of the penetrability of different glove materials under conditions of use have been conducted in the dental environment. Consistent with observations in clinical medicine, leakage rates vary by glove material (e.g., latex, vinyl, and nitrile), duration of use, and type of procedure performed, as well as by manufacturer. The frequency of perforations in surgeon’s gloves used during outpatient oral surgical procedures has been determined to range from 6% to 16%.
Studies have demonstrated that HCP and DHCP are frequently unaware of minute tears in gloves that occur during use. These studies determined that gloves developed defects in 30 minutes–3 hours, depending on type of glove and procedure. Investigators did not determine an optimal time for changing gloves during procedures.
During dental procedures, patient examination and surgeon’s gloves commonly contact multiple types of chemicals and materials (e.g., disinfectants and antiseptics, composite resins, and bonding agents) that can compromise the integrity of latex as well as vinyl, nitrile, and other synthetic glove materials. In addition, latex gloves can interfere with the setting of vinyl polysiloxane impression materials, although the setting is apparently not adversely affected by synthetic vinyl gloves. Given the diverse selection of dental materials on the market, dental practitioners should consult glove manufacturers regarding the chemical compatibility of glove materials.
If the integrity of a glove is compromised (e.g., punctured), it should be changed as soon as possible. Washing latex gloves with plain soap, chlorhexidine, or alcohol can lead to the formation of glove micropunctures and subsequent hand contamination. Because this condition, known as wicking, can allow penetration of liquids through undetected holes, washing gloves is not recommended. After a hand rub with alcohol, the hands should be thoroughly dried before gloving, because hands still wet with an alcohol-based hand hygiene product can increase the risk of glove perforation.
FDA regulates the medical glove industry, which includes gloves marketed as sterile surgeon’s and sterile or nonsterile patient examination gloves. General-purpose utility gloves are also used in dental health-care settings but are not regulated by FDA because they are not promoted for medical use. More rigorous standards are applied to surgeon’s than to examination gloves. FDA has identified acceptable quality levels (e.g., maximum defects allowed) for glove manufacturers, but even intact gloves eventually fail with exposure to mechanical (e.g., sharps, fingernails, or jewelry) and chemical (e.g., dimethyacrylates) hazards and over time. These variables can be controlled, ultimately optimizing glove performance, by 1) maintaining short fingernails, 2) minimizing or eliminating hand jewelry, and 3) using engineering and work-practice controls to avoid injuries with sharps.
Sterile Surgeon’s Gloves and Double-Gloving During Oral Surgical Procedures
Certain limited studies have determined no difference in postoperative infection rates after routine tooth extractions when surgeons wore either sterile or nonsterile gloves. However, wearing sterile surgeon’s gloves during surgical procedures is supported by a strong theoretical rationale. Sterile gloves minimize transmission of microorganisms from the hands of surgical DHCP to patients and prevent contamination of the hands of surgical DHCP with the patient’s blood and body fluids. In addition, sterile surgeon’s gloves are more rigorously regulated by FDA and therefore might provide an increased level of protection for the provider if exposure to blood is likely.
Although the effectiveness of wearing two pairs of gloves in preventing disease transmission has not been demonstrated, the majority of studies among HCP and DHCP have demonstrated a lower frequency of inner glove perforation and visible blood on the surgeon’s hands when double gloves are worn. In one study evaluating double gloves during oral surgical and dental hygiene procedures, the perforation of outer latex gloves was greater during longer procedures (i.e., >45 minutes), with the highest rate (10%) of perforation occurring during oral surgery procedures. Based on these studies, double gloving might provide additional protection from occupational blood contact. Double gloving does not appear to substantially reduce either manual dexterity or tactile sensitivity. Additional protection might also be provided by specialty products (e.g., orthopedic surgical gloves and glove liners).
Contact Dermatitis and Latex Hypersensitivity
Occupationally related contact dermatitis can develop from frequent and repeated use of hand hygiene products, exposure to chemicals, and glove use. Contact dermatitis is classified as either irritant or allergic. Irritant contact dermatitis is common, nonallergic, and develops as dry, itchy, irritated areas on the skin around the area of contact. By comparison, allergic contact dermatitis (type IV hypersensitivity) can result from exposure to accelerators and other chemicals used in the manufacture of rubber gloves (e.g., natural rubber latex, nitrile, and neoprene), as well as from other chemicals found in the dental practice setting (e.g., methacrylates and glutaraldehyde). Allergic contact dermatitis often manifests as a rash beginning hours after contact and, similar to irritant dermatitis, is usually confined to the area of contact.
Latex allergy (type I hypersensitivity to latex proteins) can be a more serious systemic allergic reaction, usually beginning within minutes of exposure but sometimes occurring hours later and producing varied symptoms. More common reactions include runny nose, sneezing, itchy eyes, scratchy throat, hives, and itchy burning skin sensations. More severe symptoms include asthma marked by difficult breathing, coughing spells, and wheezing; cardiovascular and gastrointestinal ailments; and in rare cases, anaphylaxis and death. The American Dental Association (ADA) began investigating the prevalence of type I latex hypersensitivity among DHCP at the ADA annual meeting in 1994. In 1994 and 1995, approximately 2,000 dentists, hygienists, and assistants volunteered for skin-prick testing. Data demonstrated that 6.2% of those tested were positive for type I latex hypersensitivity. Data from the subsequent 5 years of this ongoing cross-sectional study indicated a decline in prevalence from 8.5% to 4.3%. This downward trend is similar to that reported by other studies and might be related to use of latex gloves with lower allergen content.
Natural rubber latex proteins responsible for latex allergy are attached to glove powder. When powdered latex gloves are worn, more latex protein reaches the skin. In addition, when powdered latex gloves are donned or removed, latex protein/powder particles become aerosolized and can be inhaled, contacting mucous membranes. As a result, allergic patients and DHCP can experience cutaneous, respiratory, and conjunctival symptoms related to latex protein exposure. DHCP can become sensitized to latex protein with repeated exposure. Work areas where only powder-free, low-allergen latex gloves are used demonstrate low or undetectable amounts of latex allergy-causing proteins and fewer symptoms among HCP related to natural rubber latex allergy. Because of the role of glove powder in exposure to latex protein, NIOSH recommends that if latex gloves are chosen, HCP should be provided with reduced protein, powder-free gloves. Nonlatex (e.g., nitrile or vinyl) powder-free and low-protein gloves are also available. Although rare, potentially life-threatening anaphylactic reactions to latex can occur; dental practices should be appropriately equipped and have procedures in place to respond to such emergencies.
DHCP and dental patients with latex allergy should not have direct contact with latex-containing materials and should be in a latex-safe environment with all latex-containing products removed from their vicinity. Dental patients with histories of latex allergy can be at risk from dental products (e.g., prophylaxis cups, rubber dams, orthodontic elastics, and medication vials). Any latex-containing devices that cannot be removed from the treatment environment should be adequately covered or isolated. Persons might also be allergic to chemicals used in the manufacture of natural rubber latex and synthetic rubber gloves as well as metals, plastics, or other materials used in dental care. Taking thorough health histories for both patients and DHCP, followed by avoidance of contact with potential allergens can minimize the possibility of adverse reactions. Certain common predisposing conditions for latex allergy include previous history of allergies, a history of spina bifida, urogenital anomalies, or allergies to avocados, kiwis, nuts, or bananas. The following precautions should be considered to ensure safe treatment for patients who have possible or documented latex allergy:
  • Be aware that latent allergens in the ambient air can cause respiratory or anaphylactic symptoms among persons with latex hypersensitivity. Patients with latex allergy can be scheduled for the first appointment of the day to minimize their inadvertent exposure to airborne latex particles.
  • Communicate with other DHCP regarding patients with latex allergy (e.g., by oral instructions, written protocols, and posted signage) to prevent them from bringing latex-containing materials into the treatment area.
  • Frequently clean all working areas contaminated with latex powder or dust.
  • Have emergency treatment kits with latex-free products available at all times.
  • If latex-related complications occur during or after a procedure, manage the reaction and seek emergency assistance as indicated. Follow current medical emergency response recommendations for management of anaphylaxis.