Re: DISTRACTION OSTEOGENESIS

Home Forums Oral & Maxillofacial surgery DISTRACTION OSTEOGENESIS Re: DISTRACTION OSTEOGENESIS

#17414
sushantpatel_docsushantpatel_doc
Offline
Registered On: 30/11/2009
Topics: 510
Replies: 666
Has thanked: 0 times
Been thanked: 0 times

Maxillofacial Distraction Osteogenesis

Correcting the majority of congenital craniofacial defects, as well as some facial injuries resulting from trauma, requires making bones longer. Distraction osteogenesis is an effective way to grow new bone, but it is much more difficult to accomplish in the face than in other areas of the body. Bones must often be moved in three dimensions, as opposed to just one, as in a limb, and scarring must be kept to a minimum. Researchers are attempting to improve the distraction devices used in the face. Until recently, the mechanisms were external and only operated along straight lines. Now, maxillofacial surgeons can use curvilinear devices capable of moving bone in three dimensions.

These new devices still need to be improved. They depend on patient caretakers reliably turning a screw. The next goal is to create devices that will move bone continuously, not in daily increments of 1 mm. These continuously moving devices would cause less pain, wouldn’t require daily patient compliance, and might promote faster bone growth. At the moment, researchers are testing a continuously moving device in animal models, and they have found that the device’s components are durable, that its user interface works, and that it is tolerated by the body. When the position sensor in the device is perfected, the device will be ready to use in people.

In distraction osteogenesis procedures involving the face, it is critical that bone movements be carefully planned before a device is implanted. No existing device is capable of changing its trajectory mid-course, and small skeletal changes lead to large changes in the structure of the face. Recently researchers have developed state-of-the-art software capable of simulating the entire process of distraction osteogenesis. The 3-D planning tool uses data from CT scans to create a segmented model of the patient’s skull, and it then calculates the vector of movement required to achieve desirable bone positioning. Outcome CT scans can be overlaid on the original model to assess the effectiveness of the procedure. In the future, researchers hope that the distraction devices used in maxillofacial procedures will continue to improve, along with the corresponding software