Home › Forums › Periodontology › Removing Some Types of Bacteria Key in Preventing Gum Disease › Removing Some Types of Bacteria Key in Preventing Gum Disease
Treponema denticola is a gram-negative bacterium from the Spirochetes family that is motile, slender, helically shaped and flexible. The organism consists of periplasmic flagella, which allows for mobility by using a proton motive force to cause thrusting through rotation. The flagellum is wound around a helical protoplasmic cylinder that contains ribosomes, genomic DNA, and other cytoplasmic constituents. (Charon NW, 1992) Its habitat is anaerobic and host-associated. It grows at an optimal temperature of 30-42°C, with a pH of 6.5-8.0. It is commonly found in the human oral cavity, specifically in subgingival dental plaque, and it is often associated with periodontal disease (Seshadri et al., 2004).
Periodontal disease results in inflammation of the gum tissue, bone resorption, and subsequent tooth loss. Periodontal disease has now become a major concern in dentistry and 80% of adults in the USA are estimated to have had periodontal disease at some point in their lives (Seshadri et al., 2004). The complete genome of T. denticola strain 35405 was sequenced by using the random shotgun method described for genomes sequenced by The Institute for Genomic Research and it was designated as the type strain by Chan et al
Pathology
Treponema denticola is a bacterial pathogen that produces endotoxin proteins, which utilize enzymatic activities (Hunt, 2005). It causes periodontal disease and gum inflammation. It’s an infection caused by several types of microorganisms of the gingiva that can lead to severe effects including refractory periodontitis and acute necrotizing gingivitis, resulting in bone resorption and tooth loss. This organism causes disease by aggregating in subgingival plaque with Porphyromonas gingivalis and it uses several mechanisms in order to survive harsh conditions, such as oral biofilms. (Kuramitsu et al, 2005)
Application to Biotechnology
Treponema denticola is resistant to the harsh environment produced by beta-defensins. Beta-defensins are antimicrobrial peptides with activity to destroy microbes and periodontal pathogens. Beta-defensins are produced by the oral epithelium, tongue, and salivary glands, and are used as an immune response during inflammation. Treponema denticola’s ability to survive the effects of beta-defensins is a characteristic that can provide insight into possible treatments to break down such organisms