Home › Forums › Sleep Dentistry › Snoring Treatable By Dental Device › Snoring Treatable By Dental Device
Behavioral changes are the simplest treatments for mild obstructive sleep apnea, but often the hardest to make. Occasionally, apneas occur only in some positions (most commonly lying flat on the back). A person can change his or her sleeping position, reduce apneas, and improve their sleep.
Obesity is a known contributing factor to obstructive sleep apnea. It is estimated that a 10% weight gain will worsen the apnea-hypopnea index by 30%, and a 10% weight loss will decrease the apnea-hypopnea index by 25%. Therefore, a healthy lifestyle and diet that encourages weight loss will improve obstructive sleep apnea.
Unfortunately, most people with obstructive sleep apnea are tired and do not have much energy for exercise. This is a difficult behavioral spiral since the more tired a person is — the less they exercise — the more weight they gain — the worse the obstructive sleep apnea becomes — and the more tired they become. Frequently, after obstructive sleep apnea is treated by other methods people are able to lose weight and the obstructive sleep apnea may improve.
Sleep hygiene and other behavioral modifications known to improve the overall quality of sleep are also recommended. Below are some common practices that can induce sleep and enhance its quality:
reduce lighting and noise in the bedroom;
avoid reading or watching TV in bed;
avoid eating or exercising prior to sleep;
use the bedroom only for sleeping;
keep work related activities outside of the bedroom; and
try a period of physical and mental relaxation before going to bed.
Medication
Many medications have been studied for obstructive sleep apnea; however, because obstructive sleep apnea is due to an anatomic airway narrowing it has been difficult to find a medication that helps.
In people with nasal airway obstruction causing obstructive sleep apnea, nasal steroid sprays have been shown to be effective. In one study, the respiratory disturbance index (RDI) decreased from 20 to 11 with nasal sprays.
Topical nasal decongestants such as oxymetazoline and neosynephrine, also can temporarily improve nasal swelling. The problem is that they cannot be used for more than 3-5 days without decreased effectiveness and withdrawal symptoms.
People who have obstructive sleep apnea due to hypothyroidism (low thyroid hormone production) improve with thyroid replacement therapy. However, people with normal thyroid function, will not improve with this therapy.
People who have obstructive sleep apnea due to obesity may improve with diet medications if they are effective in assisting with weight loss.
Other medications have been studied, including medroxyprogesterone (Provera, Cycrin, Amen), acetazolamide (Diamox) , theophylline (Theo-Dur, Respbid, Slo-Bid, Theo-24, Theolair, Uniphyl, Slo-Phyllin), tricyclic antidepressants, and selective serotonin reuptake inhibitors (SSRIs). In these studies, they were shown to have little or no effect. There are also new medications to help increase alertness. They may be temporarily successful in increasing attention; however, they do not treat the sleep deprivation or the cause of obstructive sleep apnea.
In cases where sleep apnea may be caused by another underlying condition, appropriate treatment of such conditions is recommended and may be beneficial. For example, treating underlying heart failure may improve sleep apnea if it is a contributing factor. In people with sinusitis and nasal congestion, the swelling and inflammation of the upper airway passages can cause snoring and sleep apnea. Therefore, medications to treat underlying sinusitis and congestion can potentially improve sleep apnea in these individuals.
Medications are also available that could increase daytime wakefulness in people who suffer from sleep apnea. These medications stimulate the brain through an unknown mechanism of action. The prototypical drug in this class is called modafinil (Provigil). Studies have revealed greater resolution of daytime sleepiness when using modafinil in patients with sleep apnea. A similar, newer drug in this class, called armodafinil (Nuvigil), has a longer half-life and is also approved by the FDA for the treatment of excessive daytime sleepiness in people with sleep apnea. Armodafinil has shown similar clinical results in significantly improving daytime quality of life and functioning. It is important to note that the primary treatment for obstructive sleep apnea (OSA) remains CPAP (described below). Stimulants, such as modafinil (Provigil) and armodafinil, are recommended for those who have excessive daytime sleepiness despite proper CPAP use at night. They are not meant to replace CPAP use, but rather, as an adjunctive therapy to CPAP in those who have daytime symptoms even with CPAP use. Approximately one third of people who use CPAP at night for sleep apnea may continue to have somnolence during the day. This is the population that could benefit from using modafinil (Provigil) or armodafinil (Nuvigil).
Dental appliances
A dental appliance holds the jaw and tongue forward and the palate up, thus preventing closure of the airway. This small increase in airway size often is enough to control the apneas.
Dental appliances are an excellent treatment for mild to moderate obstructive sleep apnea. It is reported to be about 75% effective for these groups. A dental appliance does not require surgery; it is small, portable, and does not require a machine. However, there are some disadvantages to the dental appliance. It can cause or worsen temporomandibular joint (TMJ) dysfunction. If the jaw is pulled too far forward, it can cause pain in the joint when eating. For this reason, it is best to have a dentist or oral surgeon fit and adjust the appliance. A dental appliance requires natural teeth to fit properly, it must be worn every night, and the cost is variable, as is insurance coverage.
Continuous positive airway pressure (CPAP)
Continuous positive airway pressure (CPAP) is probably the best, non-surgical treatment for any level of obstructive sleep apnea. In finding a treatment for obstructive sleep apnea, the primary goal is to hold the airway open so it does not collapse during sleep. The dental appliances and surgeries (described later) focus on moving the tissues of the airway. CPAP uses air pressure to hold the tissues open during sleep.
CPAP was first used in Australia by Dr. Colin Sullivan in 1981 for obstructive sleep apnea. It delivers the air through a nasal or face-mask under pressure. As a person breathes, the gentle pressure holds the nose, palate, and throat tissues open. It feels similar to holding your head outside the window of a moving car. You can feel the pressure, but you can also breathe easily.
The CPAP machine blows heated, humidified air through a short tube to a mask. The mask must be worn snugly to prevent the leakage of air. There are many different masks, including nasal pillows, nasal masks, and full-face masks. The CPAP machine is a little larger than a toaster. It is portable and can be taken on trips.
Determining CPAP pressure: With CPAP it is important to use the lowest possible pressure that will keep the airway open during sleep. This pressure is determined by "titration." Titration frequently is performed with the help of polysomnography. It can be performed during the same night as the initial polysomnography or on a separate night. In the sleep laboratory an adjustable CPAP machine is used. A mask is fit to the person and he or she is allowed to fall back asleep.
During baseline sleep the apneas and hypopneas occur, and the the technician then slowly increases the CPAP pressure until the apneas and hypopneas stop or decrease to a normal level. A different pressure may be needed for different positions or levels of sleep. Typically, laying on the back and REM sleep promote the worst obstructive sleep apnea. The lowest pressure that controls obstructive sleep apnea in all positions and sleep levels is prescribed.
Effectiveness of CPAP: CPAP has been shown to be effective in improving subjective and objective measures of obstructive sleep apnea.
It decreases apneas and hypopneas.
It decreases sleepiness as measured by surveys and objective tests.
It improves cognitive functioning on tests.
It improves driving on driving simulation tests and decreases the number of accidents in the real world.
When adjusted properly and tolerated, it is nearly 100% effective in eliminating or reducing obstructive sleep apnea.
An important clinical outcome of CPAP use is in the area of prevention of the potential complications of obstructive sleep apnea. Studies have shown that the proper use of CPAP reduces hospitalization for cardiac and pulmonary causes in people with obstructive sleep apnea. More generally, treating obstructive sleep apnea with CPAP can reduce the risks of conditions related to obstructive sleep apnea, such as, ischemic heart disease, abnormal heart rhythms, stroke, hypertension, and insulin dependence.
Problems with CPAP: The first 2-4 weeks is the crucial time to become a successful CPAP user. During this time, it is important to try to sleep as many hours a night as possible with the mask on. If the mask does not fit properly or the machine is not working it is important to have it fixed immediately. It is also helpful to remember all of the increased risks of untreated obstructive sleep apnea (decreased productivity, heart attacks, strokes, car accidents, and sudden death) as an incentive to continue using CPAP.
People with severe obstructive sleep apnea, never get a normal night of sleep. They often put on the CPAP mask and think it is the best thing ever. They quickly get used to it because it allows them to sleep. They take it on vacations because without it they have no energy and are always sleepy.
However, CPAP is not always easy to use. People with only mild to moderate sleep apnea often have a harder time using CPAP. About 60% of people with CPAP machines report that they use them, but only 45% of them actually use them more than four hours per night when the actual use time is measured. Between 25% and 50% of people who start using CPAP, stop using it.
It is not easy to sleep with a mask that is blowing air into your nose. Some people are claustrophobic and have difficulty getting used to any mask. If a patient has nasal congestion or a septal deviation; it is important to have these evaluated since they can be treated (as discussed later). Some people do not like the inconvenience of sleeping with the mask or traveling with the machine. Others do not like the image of having to sleep with a mask. The noise of the machine blowing air can also be bothersome to some people using the CPAP or their bed partners.
Bi-level positive airway pressure (BiPAP)
Bi-level positive airway pressure (BiPAP) was designed for people who do not tolerate the higher pressures of CPAP. It is similar to CPAP in that a machine delivers a positive pressure to a mask during sleep. However, the BiPAP machine delivers a higher pressure during inspiration, and a lower pressure during expiration, which allows the person not to feel like they are breathing out against such a high pressure, which can be bothersome. It is most helpful for people who require a higher pressure to keep their airway open. BiPAP was designed to improve CPAP compliance; however it is difficult to measure an increase in compliance when compared to standard CPAP. BiPAP is often only approved by insurance companies after documentation that a patient cannot tolerate CPAP.
Auto-titrating continuous positive airway pressure
The auto-titrating CPAP machine is a "smart" CPAP machine that makes pressure adjustments throughout the night. As discussed above, different pressures are needed for different levels of sleep and positions. The goal of auto-titrating CPAP is to have the lowest possible pressure for each position or sleep level. At a given pressure, if a person starts to have an apnea or hypopnea, the machine adjusts the pressure higher until the episodes are controlled. If a person is in a sleep level or position that doesn’t need a higher pressure, the pressure is reduced. The benefit is when a lower pressure is all that is required, the machine is not stuck at the highest pressure needed. The down side is, if the machine does not adjust, a person can be stuck at a lower pressure having episodes of sleep apnea.
With auto-titrating CPAP, the mean pressure throughout the night is lower and 2/3 of the night is spent below the set CPAP pressure. The machine also can adjust for the changes in pressure that are needed to overcome the effects of weight gain and alcohol or sedative use. It may also improve compliance; however, this has not been measured. The disadvantages of auto-titrating CPAP are that leaks may underestimate pressure or airflow. Each company has a different algorithm for adjusting the pressure and adjusting for leaks. It is unclear which company has the best algorithm, but studies are on-going.