infection control guidelines for dentists

Home Forums MISCELLANEOUS POSTS MISCELLANEOUS POSTS infection control guidelines for dentists

Welcome Dear Guest

To create a new topic please register on the forums. For help contact : discussdentistry@hotmail.com

Currently, there are 0 users and 1 guest visiting this topic.
Viewing 15 posts - 1 through 15 (of 43 total)
  • Author
    Posts
  • #11381
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    In the United States, an estimated 9 million persons work in health-care professions, including approximately 168,000 dentists, 112,000 registered dental hygienists, 218,000 dental assistants, and 53,000 dental laboratory technicians. Here, dental health-care personnel (DHCP) refers to all paid and unpaid personnel in the dental health-care setting who might be occupationally exposed to infectious materials, including body substances and contaminated supplies, equipment, environmental surfaces, water, or air. DHCP include dentists, dental hygienists, dental assistants, dental laboratory technicians (in-office and commercial), students and trainees, contractual personnel, and other persons not directly involved in patient care but potentially exposed to infectious agents (e.g., administrative, clerical, housekeeping, maintenance, or volunteer personnel). Recommendations in this report are designed to prevent or reduce potential for disease transmission from patient to DHCP, from DHCP to patient, and from patient to patient. Although these guidelines focus mainly on outpatient, ambulatory dental health-care settings, the recommended infection-control practices are applicable to all settings in which dental treatment is provided.
    Dental patients and DHCP can be exposed to pathogenic microorganisms including cytomegalovirus (CMV), HBV, HCV, herpes simplex virus types 1 and 2, HIV, Mycobacterium tuberculosis, staphylococci, streptococci, and other viruses and bacteria that colonize or infect the oral cavity and respiratory tract. These organisms can be transmitted in dental settings through 1) direct contact with blood, oral fluids, or other patient materials; 2) indirect contact with contaminated objects (e.g., instruments, equipment, or environmental surfaces); 3) contact of conjunctival, nasal, or oral mucosa with droplets (e.g., spatter) containing microorganisms generated from an infected person and propelled a short distance (e.g., by coughing, sneezing, or talking); and 4) inhalation of airborne microorganisms that can remain suspended in the air for long periods.
    Infection through any of these routes requires that all of the following conditions be present:
    • – a pathogenic organism of sufficient virulence and in adequate numbers to cause disease;
    • – a reservoir or source that allows the pathogen to survive and multiply (e.g., blood);
    • – a mode of transmission from the source to the host;
    • – a portal of entry through which the pathogen can enter the host; and
    • – a susceptible host (i.e., one who is not immune).
    Occurrence of these events provides the chain of infection. Effective infection-control strategies prevent disease transmission by interrupting one or more links in the chain.
    Previous CDC recommendations regarding infection control for dentistry focused primarily on the risk of transmission of bloodborne pathogens among DHCP and patients and use of universal precautions to reduce that risk. Universal precautions were based on the concept that all blood and body fluids that might be contaminated with blood should be treated as infectious because patients with bloodborne infections can be asymptomatic or unaware they are infected. Preventive practices used to reduce blood exposures, particularly percutaneous exposures, include 1) careful handling of sharp instruments, 2) use of rubber dams to minimize blood spattering; 3) handwashing; and 4) use of protective barriers (e.g., gloves, masks, protective eyewear, and gowns).
    The relevance of universal precautions to other aspects of disease transmission was recognized, and in 1996, CDC expanded the concept and changed the term to standard precautions. Standard precautions integrate and expand the elements of universal precautions into a standard of care designed to protect HCP and patients from pathogens that can be spread by blood or any other body fluid, excretion, or secretion. Standard precautions apply to contact with 1) blood; 2) all body fluids, secretions, and excretions (except sweat), regardless of whether they contain blood; 3) non-intact skin; and 4) mucous membranes. Saliva has always been considered a potentially infectious material in dental infection control; thus, no operational difference exists in clinical dental practice between universal precautions and standard precautions.
    In addition to standard precautions, other measures (e.g., expanded or transmission-based precautions) might be necessary to prevent potential spread of certain diseases (e.g., TB, influenza, and varicella) that are transmitted through airborne, droplet, or contact transmission (e.g., sneezing, coughing, and contact with skin). When acutely ill with these diseases, patients do not usually seek routine dental outpatient care. Nonetheless, a general understanding of precautions for diseases transmitted by all routes is critical because 1) some DHCP are hospital-based or work part-time in hospital settings; 2) patients infected with these diseases might seek urgent treatment at outpatient dental offices; and 3) DHCP might become infected with these diseases. Necessary transmission-based precautions might include patient placement (e.g., isolation), adequate room ventilation, respiratory protection (e.g., N-95 masks) for DHCP, or postponement of nonemergency dental procedures.
    DHCP should be familiar also with the hierarchy of controls that categorizes and prioritizes prevention strategies. For bloodborne pathogens, engineering controls that eliminate or isolate the hazard (e.g., puncture-resistant sharps containers or needle-retraction devices) are the primary strategies for protecting DHCP and patients. Where engineering controls are not available or appropriate, work-practice controls that result in safer behaviors (e.g., one-hand needle recapping or not using fingers for cheek retraction while using sharp instruments or suturing), and use of personal protective equipment (PPE) (e.g., protective eyewear, gloves, and mask) can prevent exposure. In addition, administrative controls (e.g., policies, procedures, and enforcement measures targeted at reducing the risk of exposure to infectious persons) are a priority for certain pathogens (e.g., M. tuberculosis), particularly those spread by airborne or droplet routes.
    Dental practices should develop a written infection-control program to prevent or reduce the risk of disease transmission. Such a program should include establishment and implementation of policies, procedures, and practices (in conjunction with selection and use of technologies and products) to prevent work-related injuries and illnesses among DHCP as well as health-care–associated infections among patients. The program should embody principles of infection control and occupational health, reflect current science, and adhere to relevant federal, state, and local regulations and statutes. An infection-control coordinator (e.g., dentist or other DHCP) knowledgeable or willing to be trained should be assigned responsibility for coordinating the program. The effectiveness of the infection-control program should be evaluated on a day-to-day basis and over time to help ensure that policies, procedures, and practices are useful, efficient, and successful (see Program Evaluation).
    Although the infection-control coordinator remains responsible for overall management of the program, creating and maintaining a safe work environment ultimately requires the commitment and accountability of all DHCP. This report is designed to provide guidance to DHCP for preventing disease transmission in dental health-care settings, for promoting a safe working environment, and for assisting dental practices in developing and implementing infection-control programs. These programs should be followed in addition to practices and procedures for worker protection required by the Occupational Safety and Health Administration’s (OSHA) standards for occupational exposure to bloodborne pathogens , including instituting controls to protect employees from exposure to blood or other potentially infectious materials (OPIM), and requiring implementation of a written exposure-control plan, annual employee training, HBV vaccinations, and postexposure follow-up . Interpretations and enforcement procedures are available to help DHCP apply this OSHA standard in practice. Also, manufacturer’s Material Safety Data Sheets (MSDS) should be consulted regarding correct procedures for handling or working with hazardous chemicals. 
    Stay tuned for further information….
    #16434
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Personnel Health Elements of an Infection-Control Program
    A protective health component for DHCP is an integral part of a dental practice infection-control program. The objectives are to educate DHCP regarding the principles of infection control, identify work-related infection risks, institute preventive measures, and ensure prompt exposure management and medical follow-up. Coordination between the dental practice’s infection-control coordinator and other qualified health-care professionals is necessary to provide DHCP with appropriate services. Dental programs in institutional settings, (e.g., hospitals, health centers, and educational institutions) can coordinate with departments that provide personnel health services. However, the majority of dental practices are in ambulatory, private settings that do not have licensed medical staff and facilities to provide complete on-site health service programs. In such settings, the infection-control coordinator should establish programs that arrange for site-specific infection-control services from external health-care facilities and providers before DHCP are placed at risk for exposure. Referral arrangements can be made with qualified health-care professionals in an occupational health program of a hospital, with educational institutions, or with health-care facilities that offer personnel health services.
    Education and Training
    Personnel are more likely to comply with an infection-control program and exposure-control plan if they understand its rationale. Clearly written policies, procedures, and guidelines can help ensure consistency, efficiency, and effective coordination of activities. Personnel subject to occupational exposure should receive infection-control training on initial assignment, when new tasks or procedures affect their occupational exposure, and at a minimum, annually. Education and training should be appropriate to the assigned duties of specific DHCP (e.g., techniques to prevent cross-contamination or instrument sterilization). For DHCP who perform tasks or procedures likely to result in occupational exposure to infectious agents, training should include 1) a description of their exposure risks; 2) review of prevention strategies and infection-control policies and procedures; 3) discussion regarding how to manage work-related illness and injuries, including PEP; and 4) review of work restrictions for the exposure or infection. Inclusion of DHCP with minimal exposure risks (e.g., administrative employees) in education and training programs might enhance facilitywide understanding of infection-control principles and the importance of the program. Educational materials should be appropriate in content and vocabulary for each person’s educational level, literacy, and language, as well as be consistent with existing federal, state, and local regulations.
    Immunization Programs
    DHCP are at risk for exposure to, and possible infection with, infectious organisms. Immunizations substantially reduce both the number of DHCP susceptible to these diseases and the potential for disease transmission to other DHCP and patients. Thus, immunizations are an essential part of prevention and infection-control programs for DHCP, and a comprehensive immunization policy should be implemented for all dental health-care facilities. The Advisory Committee on Immunization Practices (ACIP) provides national guidelines for immunization of HCP, which includes DHCP. Dental practice immunization policies should incorporate current state and federal regulations as well as recommendations from the U.S. Public Health Service and professional organizations.
    On the basis of documented health-care–associated transmission, HCP are considered to be at substantial risk for acquiring or transmitting hepatitis B, influenza, measles, mumps, rubella, and varicella. All of these diseases are vaccine-preventable. ACIP recommends that all HCP be vaccinated or have documented immunity to these diseases. ACIP does not recommend routine immunization of HCP against TB (i.e., inoculation with bacille Calmette-Guérin vaccine) or hepatitis A. No vaccine exists for HCV. ACIP guidelines also provide recommendations regarding immunization of HCP with special conditions (e.g., pregnancy, HIV infection, or diabetes).
    Immunization of DHCP before they are placed at risk for exposure remains the most efficient and effective use of vaccines in health-care settings. Some educational institutions and infection-control programs provide immunization schedules for students and DHCP. OSHA requires that employers make hepatitis B vaccination available to all employees who have potential contact with blood or OPIM. Employers are also required to follow CDC recommendations for vaccinations, evaluation, and follow-up procedures. Nonpatient-care staff (e.g., administrative or housekeeping) might be included, depending on their potential risk of coming into contact with blood or OPIM. Employers are also required to ensure that employees who decline to accept hepatitis B vaccination sign an appropriate declination statement. DHCP unable or unwilling to be vaccinated as required or recommended should be educated regarding their exposure risks, infection-control policies and procedures for the facility, and the management of work-related illness and work restrictions (if appropriate) for exposed or infected DHCP.
    Exposure Prevention and Post exposure Management
    Avoiding exposure to blood and OPIM, as well as protection by immunization, remain primary strategies for reducing occupationally acquired infections, but occupational exposures can still occur. A combination of standard precautions, engineering, work practice, and administrative controls is the best means to minimize occupational exposures. Written policies and procedures to facilitate prompt reporting, evaluation, counseling, treatment, and medical follow-up of all occupational exposures should be available to all DHCP. Written policies and procedures should be consistent with federal, state, and local requirements addressing education and training, postexposure management, and exposure reporting (see Preventing Transmission of Bloodborne Pathogens).

    DHCP who have contact with patients can also be exposed to persons with infectious TB, and should have a baseline tuberculin skin test (TST), preferably by using a two-step test, at the beginning of employment. Thus, if an unprotected occupational exposure occurs, TST conversions can be distinguished from positive TST results caused by previous exposures. The facility’s level of TB risk will determine the need for routine follow-up TSTs (see Special Considerations).  

    #16439
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Medical Conditions, Work-Related Illness, and Work Restrictions
    DHCP are responsible for monitoring their own health status. DHCP who have acute or chronic medical conditions that render them susceptible to opportunistic infection should discuss with their personal physicians or other qualified authority whether the condition might affect their ability to safely perform their duties. However, under certain circumstances, health-care facility managers might need to exclude DHCP from work or patient contact to prevent further transmission of infection. Decisions concerning work restrictions are based on the mode of transmission and the period of infectivity of the disease. Exclusion policies should 1) be written, 2) include a statement of authority that defines who can exclude DHCP (e.g., personal physicians), and 3) be clearly communicated through education and training. Policies should also encourage DHCP to report illnesses or exposures without jeopardizing wages, benefits, or job status.
    With increasing concerns regarding bloodborne pathogens and introduction of universal precautions, use of latex gloves among HCP has increased markedly. Increased use of these gloves has been accompanied by increased reports of allergic reactions to natural rubber latex among HCP, DHCP, and patients, as well as increased reports of irritant and allergic contact dermatitis from frequent and repeated use of hand-hygiene products, exposure to chemicals, and glove use.

    DHCP should be familiar with the signs and symptoms of latex sensitivity. A physician should evaluate DHCP exhibiting symptoms of latex allergy, because further exposure could result in a serious allergic reaction. A diagnosis is made through medical history, physical examination, and diagnostic tests. Procedures should be in place for minimizing latex-related health problems among DHCP and patients while protecting them from infectious materials. These procedures should include 1) reducing exposures to latex-containing materials by using appropriate work practices, 2) training and educating DHCP, 3) monitoring symptoms, and 4) substituting nonlatex products where appropriate. 

    #16443
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Preventing Transmission of Blood borne Pathogens
    Although transmission of bloodborne pathogens (e.g., HBV, HCV, and HIV) in dental health-care settings can have serious consequences, such transmission is rare. Exposure to infected blood can result in transmission from patient to DHCP, from DHCP to patient, and from one patient to another. The opportunity for transmission is greatest from patient to DHCP, who frequently encounter patient blood and blood-contaminated saliva during dental procedures.
    Since 1992, no HIV transmission from DHCP to patients has been reported, and the last HBV transmission from DHCP to patients was reported in 1987. HCV transmission from DHCP to patients has not been reported. The majority of DHCP infected with a bloodborne virus do not pose a risk to patients because they do not perform activities meeting the necessary conditions for transmission. For DHCP to pose a risk for bloodborne virus transmission to patients, DHCP must 1) be viremic (i.e., have infectious virus circulating in the bloodstream); 2) be injured or have a condition (e.g., weeping dermatitis) that allows direct exposure to their blood or other infectious body fluids; and 3) enable their blood or infectious body fluid to gain direct access to a patient’s wound, traumatized tissue, mucous membranes, or similar portal of entry. Although an infected DHCP might be viremic, unless the second and third conditions are also met, transmission cannot occur.
    The risk of occupational exposure to bloodborne viruses is largely determined by their prevalence in the patient population and the nature and frequency of contact with blood and body fluids through percutaneous or permucosal routes of exposure. The risk of infection after exposure to a bloodborne virus is influenced by inoculum size, route of exposure, and susceptibility of the exposed HCP. The majority of attention has been placed on the bloodborne pathogens HBV, HCV, and HIV, and these pathogens present different levels of risk to DHCP.
     
    Exposure Prevention Methods
    Avoiding occupational exposures to blood is the primary way to prevent transmission of HBV, HCV, and HIV, to HCP in health-care settings. Exposures occur through percutaneous injury (e.g., a needlestick or cut with a sharp object), as well as through contact between potentially infectious blood, tissues, or other body fluids and mucous membranes of the eye, nose, mouth, or nonintact skin (e.g., exposed skin that is chapped, abraded, or shows signs of dermatitis).
    Observational studies and surveys indicate that percutaneous injuries among general dentists and oral surgeons occur less frequently than among general and orthopedic surgeons and have decreased in frequency since the mid-1980s. This decline has been attributed to safer work practices, safer instrumentation or design, and continued DHCP education. Percutaneous injuries among DHCP usually 1) occur outside the patient’s mouth, thereby posing less risk for recontact with patient tissues; 2) involve limited amounts of blood; and 3) are caused by burs, syringe needles, laboratory knives, and other sharp instruments. Injuries among oral surgeons might occur more frequently during fracture reductions using wires. Experience, as measured by years in practice, does not appear to affect the risk of injury among general dentists or oral surgeons.
    The majority of exposures in dentistry are preventable, and methods to reduce the risk of blood contacts have included use of standard precautions, use of devices with features engineered to prevent sharp injuries, and modifications of work practices. These approaches might have contributed to the decrease in percutaneous injuries among dentists during recent years. However, needlesticks and other blood contacts continue to occur, which is a concern because percutaneous injuries pose the greatest risk of transmission.
    Standard precautions include use of PPE (e.g., gloves, masks, protective eyewear or face shield, and gowns) intended to prevent skin and mucous membrane exposures. Other protective equipment (e.g., finger guards while suturing) might also reduce injuries during dental procedures.
    Engineering controls are the primary method to reduce exposures to blood and OPIM from sharp instruments and needles. These controls are frequently technology-based and often incorporate safer designs of instruments and devices (e.g., self-sheathing anesthetic needles and dental units designed to shield burs in handpieces) to reduce percutaneous injuries.
    Work-practice controls establish practices to protect DHCP whose responsibilities include handling, using, assembling, or processing sharp devices (e.g., needles, scalers, laboratory utility knives, burs, explorers, and endodontic files) or sharps disposal containers. Work-practice controls can include removing burs before disassembling the handpiece from the dental unit, restricting use of fingers in tissue retraction or palpation during suturing and administration of anesthesia, and minimizing potentially uncontrolled movements of such instruments as scalers or laboratory knives.
    As indicated, needles are a substantial source of percutaneous injury in dental practice, and engineering and work-practice controls for needle handling are of particular importance. In 2001, revisions to OSHA’s bloodborne pathogens standard as mandated by the Needlestick Safety and Prevention Act of 2000 became effective. These revisions clarify the need for employers to consider safer needle devices as they become available and to involve employees directly responsible for patient care (e.g., dentists, hygienists, and dental assistants) in identifying and choosing such devices. Safer versions of sharp devices used in hospital settings have become available (e.g., blunt suture needles, phlebotomy devices, and butterfly needles), and their impact on reducing injuries has been documented. Aspirating anesthetic syringes that incorporate safety features have been developed for dental procedures, but the low injury rates in dentistry limit assessment of their effect on reducing injuries among DHCP.
    Work-practice controls for needles and other sharps include placing used disposable syringes and needles, scalpel blades, and other sharp items in appropriate puncture-resistant containers located as close as feasible to where the items were used. In addition, used needles should never be recapped or otherwise manipulated by using both hands, or any other technique that involves directing the point of a needle toward any part of the body. A one-handed scoop technique, a mechanical device designed for holding the needle cap to facilitate one-handed recapping, or an engineered sharps injury protection device (e.g., needles with resheathing mechanisms) should be employed for recapping needles between uses and before disposal. DHCP should never bend or break needles before disposal because this practice requires unnecessary manipulation. Before attempting to remove needles from nondisposable aspirating syringes, DHCP should recap them to prevent injuries. For procedures involving multiple injections with a single needle, the practitioner should recap the needle between injections by using a one-handed technique or use a device with a needle-resheathing mechanism. Passing a syringe with an unsheathed needle should be avoided because of the potential for injury.
    Additional information for developing a safety program and for identifying and evaluating safer dental devices is available at

     

    #16448
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Post exposure Management and Prophylaxis
    Postexposure management is an integral component of a complete program to prevent infection after an occupational exposure to blood. During dental procedures, saliva is predictably contaminated with blood. Even when blood is not visible, it can still be present in limited quantities and therefore is considered a potentially infectious material by OSHA. A qualified health-care professional should evaluate any occupational exposure incident to blood or OPIM, including saliva, regardless of whether blood is visible, in dental settings.
    Dental practices and laboratories should establish written, comprehensive programs that include hepatitis B vaccination and postexposure management protocols that 1) describe the types of contact with blood or OPIM that can place DHCP at risk for infection; 2) describe procedures for promptly reporting and evaluating such exposures; and 3) identify a health-care professional who is qualified to provide counseling and perform all medical evaluations and procedures in accordance with current recommendations of the U.S. Public Health Service (PHS), including PEP with chemotherapeutic drugs when indicated. DHCP, including students, who might reasonably be considered at risk for occupational exposure to blood or OPIM should be taught strategies to prevent contact with blood or OPIM and the principles of postexposure management, including PEP options, as part of their job orientation and training. Educational programs for DHCP and students should emphasize reporting all exposures to blood or OPIM as soon as possible, because certain interventions have to be initiated promptly to be effective. Policies should be consistent with the practices and procedures for worker protection required by OSHA and with current PHS recommendations for managing occupational exposures to blood.
    After an occupational blood exposure, first aid should be administered as necessary. Puncture wounds and other injuries to the skin should be washed with soap and water; mucous membranes should be flushed with water. No evidence exists that using antiseptics for wound care or expressing fluid by squeezing the wound further reduces the risk of bloodborne pathogen transmission; however, use of antiseptics is not contraindicated. The application of caustic agents (e.g., bleach) or the injection of antiseptics or disinfectants into the wound is not recommended. Exposed DHCP should immediately report the exposure to the infection-control coordinator or other designated person, who should initiate referral to the qualified health-care professional and complete necessary reports. Because multiple factors contribute to the risk of infection after an occupational exposure to blood, the following information should be included in the exposure report, recorded in the exposed person’s confidential medical record, and provided to the qualified health-care professional:
    • Date and time of exposure.
    • Details of the procedure being performed, including where and how the exposure occurred and whether the exposure involved a sharp device, the type and brand of device, and how and when during its handling the exposure occurred.
    • Details of the exposure, including its severity and the type and amount of fluid or material. For a percutaneous injury, severity might be measured by the depth of the wound, gauge of the needle, and whether fluid was injected; for a skin or mucous membrane exposure, the estimated volume of material, duration of contact, and the condition of the skin (e.g., chapped, abraded, or intact) should be noted.
    • Details regarding whether the source material was known to contain HIV or other bloodborne pathogens, and, if the source was infected with HIV, the stage of disease, history of antiretroviral therapy, and viral load, if known.
    • Details regarding the exposed person (e.g., hepatitis B vaccination and vaccine-response status).
    • Details regarding counseling, postexposure management, and follow-up.
    Each occupational exposure should be evaluated individually for its potential to transmit HBV, HCV, and HIV, based on the following:
    • The type and amount of body substance involved.
    • The type of exposure (e.g., percutaneous injury, mucous membrane or nonintact skin exposure, or bites resulting in blood exposure to either person involved).
    • The infection status of the source.
    • The susceptibility of the exposed person.
    All of these factors should be considered in assessing the risk for infection and the need for further follow-up (e.g., PEP).

    During 1990–1998, PHS published guidelines for PEP and other management of health-care worker exposures to HBV, HCV, or HIV. In 2001, these recommendations were updated and consolidated into one set of PHS guidelines. The new guidelines reflect the availability of new antiretroviral agents, new information regarding the use and safety of HIV PEP, and considerations regarding employing HIV PEP when resistance of the source patient’s virus to antiretroviral agents is known or suspected. In addition, the 2001 guidelines provide guidance to clinicians and exposed HCP regarding when to consider HIV PEP and recommendations for PEP regimens.  

    #16468
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Hand Hygiene
    Hand hygiene (e.g., handwashing, hand antisepsis, or surgical hand antisepsis) substantially reduces potential pathogens on the hands and is considered the single most critical measure for reducing the risk of transmitting organisms to patients and HCP. Hospital-based studies have demonstrated that noncompliance with hand hygiene practices is associated with health-care–associated infections and the spread of multiresistant organisms. Noncompliance also has been a major contributor to outbreaks. The prevalence of health-care–associated infections decreases as adherence of HCP to recommended hand hygiene measures improves.
    The microbial flora of the skin, first described in 1938, consist of transient and resident microorganisms. Transient flora, which colonize the superficial layers of the skin, are easier to remove by routine handwashing. They are often acquired by HCP during direct contact with patients or contaminated environmental surfaces; these organisms are most frequently associated with health-care–associated infections. Resident flora attached to deeper layers of the skin are more resistant to removal and less likely to be associated with such infections.
    The preferred method for hand hygiene depends on the type of procedure, the degree of contamination, and the desired persistence of antimicrobial action on the skin. For routine dental examinations and nonsurgical procedures, handwashing and hand antisepsis is achieved by using either a plain or antimicrobial soap or water. If the hands are not visibly soiled, an alcohol-based hand rub is adequate.
    The purpose of surgical hand antisepsis is to eliminate transient flora and reduce resident flora for the duration of a procedure to prevent introduction of organisms in the operative wound, if gloves become punctured or torn. Skin bacteria can rapidly multiply under surgical gloves if hands are washed with soap that is not antimicrobial. Thus, an antimicrobial soap or alcohol hand rub with persistent activity should be used before surgical procedures.
    Agents used for surgical hand antisepsis should substantially reduce microorganisms on intact skin, contain a nonirritating antimicrobial preparation, have a broad spectrum of activity, be fast-acting, and have a persistent effect. Persistence (i.e., extended antimicrobial activity that prevents or inhibits survival of microorganisms after the product is applied) is critical because microorganisms can colonize on hands in the moist environment underneath gloves.
    Alcohol hand rubs are rapidly germicidal when applied to the skin but should include such antiseptics as chlorhexidine, quaternary ammonium compounds, octenidine, or triclosan to achieve persistent activity. Factors that can influence the effectiveness of the surgical hand antisepsis in addition to the choice of antiseptic agent include duration and technique of scrubbing, as well as condition of the hands, and techniques used for drying and gloving. CDC’s 2002 guideline on hand hygiene in health-care settings provides more complete information.

     

     

    #16495
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Selection of Antiseptic Agents
    Selecting the most appropriate antiseptic agent for hand hygiene requires consideration of multiple factors. Essential performance characteristics of a product (e.g., the spectrum and persistence of activity and whether or not the agent is fast-acting) should be determined before selecting a product. Delivery system, cost per use, reliable vendor support and supply are also considerations. Because HCP acceptance is a major factor regarding compliance with recommended hand hygiene protocols, considering DHCP needs is critical and should include possible chemical allergies, skin integrity after repeated use, compatibility with lotions used, and offensive agent ingredients (e.g., scent). Discussing specific preparations or ingredients used for hand antisepsis is beyond the scope of this report. DHCP should choose from commercially available HCP handwashes when selecting agents for hand antisepsis or surgical hand antisepsis.
    Storage and Dispensing of Hand Care Products
    Handwashing products, including plain (i.e., nonantimicrobial) soap and antiseptic products, can become contaminated or support the growth of microorganisms. Liquid products should be stored in closed containers and dispensed from either disposable containers or containers that are washed and dried thoroughly before refilling. Soap should not be added to a partially empty dispenser, because this practice of topping off might lead to bacterial contamination. Store and dispense products according to manufacturers’ directions.
    Lotions                                                                                          
    The primary defense against infection and transmission of pathogens is healthy, unbroken skin. Frequent handwashing with soaps and antiseptic agents can cause chronic irritant contact dermatitis among DHCP. Damage to the skin changes skin flora, resulting in more frequent colonization by staphylococci and gram-negative bacteria. The potential of detergents to cause skin irritation varies considerably, but can be reduced by adding emollients. Lotions are often recommended to ease the dryness resulting from frequent handwashing and to prevent dermatitis from glove use. However, petroleum-based lotion formulations can weaken latex gloves and increase permeability. For that reason, lotions that contain petroleum or other oil emollients should only be used at the end of the work day. Dental practitioners should obtain information from lotion manufacturers regarding interaction between lotions, gloves, dental materials, and antimicrobial products.
    Fingernails and Artificial Nails
    Although the relationship between fingernail length and wound infection is unknown, keeping nails short is considered key because the majority of flora on the hands are found under and around the fingernails. Fingernails should be short enough to allow DHCP to thoroughly clean underneath them and prevent glove tears. Sharp nail edges or broken nails are also likely to increase glove failure. Long artificial or natural nails can make donning gloves more difficult and can cause gloves to tear more readily. Hand carriage of gram-negative organisms has been determined to be greater among wearers of artificial nails than among nonwearers, both before and after handwashing. In addition, artificial fingernails or extenders have been epidemiologically implicated in multiple outbreaks involving fungal and bacterial infections in hospital intensive-care units and operating rooms. Freshly applied nail polish on natural nails does not increase the microbial load from periungual skin if fingernails are short; however, chipped nail polish can harbor added bacteria.
    Jewelry

    Studies have demonstrated that skin underneath rings is more heavily colonized than comparable areas of skin on fingers without rings. In a study of intensive-care nurses, multivariable analysis determined rings were the only substantial risk factor for carriage of gram-negative bacilli and Staphylococcus aureus, and the concentration of organisms correlated with the number of rings worn. However, two other studies demonstrated that mean bacterial colony counts on hands after handwashing were similar among persons wearing rings and those not wearing rings. Whether wearing rings increases the likelihood of transmitting a pathogen is unknown; further studies are needed to establish whether rings result in higher transmission of pathogens in health-care settings. However, rings and decorative nail jewelry can make donning gloves more difficult and cause gloves to tear more readily. Thus, jewelry should not interfere with glove use (e.g., impair ability to wear the correct-sized glove or alter glove integrity).  

    #16499
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Personal Protective Equipment
    PPE is designed to protect the skin and the mucous membranes of the eyes, nose, and mouth of DHCP from exposure to blood or OPIM. Use of rotary dental and surgical instruments (e.g., handpieces or ultrasonic scalers) and air-water syringes creates a visible spray that contains primarily large-particle droplets of water, saliva, blood, microorganisms, and other debris. This spatter travels only a short distance and settles out quickly, landing on the floor, nearby operatory surfaces, DHCP, or the patient. The spray also might contain certain aerosols (i.e., particles of respirable size, <10 µm). Aerosols can remain airborne for extended periods and can be inhaled. However, they should not be confused with the large-particle spatter that makes up the bulk of the spray from handpieces and ultrasonic scalers. Appropriate work practices, including use of dental dams and high-velocity air evacuation, should minimize dissemination of droplets, spatter, and aerosols.
    Primary PPE used in oral health-care settings includes gloves, surgical masks, protective eyewear, face shields, and protective clothing (e.g., gowns and jackets). All PPE should be removed before DHCP leave patient-care areas. Reusable PPE (e.g., clinician or patient protective eyewear and face shields) should be cleaned with soap and water, and when visibly soiled, disinfected between patients, according to the manufacturer’s directions. Wearing gloves, surgical masks, protective eyewear, and protective clothing in specified circumstances to reduce the risk of exposures to bloodborne pathogens is mandated by OSHA. General work clothes (e.g., uniforms, scrubs, pants, and shirts) are neither intended to protect against a hazard nor considered PPE.
    Masks, Protective Eyewear, Face Shields
    A surgical mask that covers both the nose and mouth and protective eyewear with solid side shields or a face shield should be worn by DHCP during procedures and patient-care activities likely to generate splashes or sprays of blood or body fluids. Protective eyewear for patients shields their eyes from spatter or debris generated during dental procedures. A surgical mask protects against microorganisms generated by the wearer, with >95% bacterial filtration efficiency, and also protects DHCP from large-particle droplet spatter that might contain bloodborne pathogens or other infectious microorganisms. The mask’s outer surface can become contaminated with infectious droplets from spray of oral fluids or from touching the mask with contaminated fingers. Also, when a mask becomes wet from exhaled moist air, the resistance to airflow through the mask increases, causing more airflow to pass around edges of the mask. If the mask becomes wet, it should be changed between patients or even during patient treatment, when possible.
    When airborne infection isolation precautions (expanded or transmission-based) are necessary (e.g., for TB patients), a National Institute for Occupational Safety and Health (NIOSH)-certified particulate-filter respirator (e.g., N95, N99, or N100) should be used. N95 refers to the ability to filter 1-µm particles in the unloaded state with a filter efficiency of >95% (i.e., filter leakage <5%), given flow rates of <50 L/min (i.e., approximate maximum airflow rate of HCP during breathing). Available data indicate infectious droplet nuclei measure 1–5 µm; therefore, respirators used in health-care settings should be able to efficiently filter the smallest particles in this range.
    The majority of surgical masks are not NIOSH-certified as respirators, do not protect the user adequately from exposure to TB, and do not satisfy OSHA requirements for respiratory protection. However, certain surgical masks (i.e., surgical N95 respirator) do meet the requirements and are certified by NIOSH as respirators. The level of protection a respirator provides is determined by the efficiency of the filter material for incoming air and how well the face piece fits or seals to the face (e.g., qualitatively or quantitatively tested in a reliable way to obtain a face-seal leakage of <10% and to fit the different facial sizes and characteristics of HCP).
    When respirators are used while treating patients with diseases requiring airborne-transmission precautions (e.g., TB), they should be used in the context of a complete respiratory protection program. This program should include training and fit testing to ensure an adequate seal between the edges of the respirator and the wearer’s face. Detailed information regarding respirator programs, including fit-test procedures are available at http://www.cdc.gov/niosh/99-143.html.
    Protective Clothing

    Protective clothing and equipment (e.g., gowns, lab coats, gloves, masks, and protective eyewear or face shield) should be worn to prevent contamination of street clothing and to protect the skin of DHCP from exposures to blood and body substances. OSHA bloodborne pathogens standard requires sleeves to be long enough to protect the forearms when the gown is worn as PPE (i.e., when spatter and spray of blood, saliva, or OPIM to the forearms is anticipated). DHCP should change protective clothing when it becomes visibly soiled and as soon as feasible if penetrated by blood or other potentially infectious fluids. All protective clothing should be removed before leaving the work area.  

    #16503
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Gloves and Gloving
    DHCP wear gloves to prevent contamination of their hands when touching mucous membranes, blood, saliva, or OPIM, and also to reduce the likelihood that microorganisms present on the hands of DHCP will be transmitted to patients during surgical or other patient-care procedures. Medical gloves, both patient examination and surgeon’s gloves, are manufactured as single-use disposable items that should be used for only one patient, then discarded. Gloves should be changed between patients and when torn or punctured.
    Wearing gloves does not eliminate the need for handwashing. Hand hygiene should be performed immediately before donning gloves. Gloves can have small, unapparent defects or can be torn during use, and hands can become contaminated during glove removal. These circumstances increase the risk of operative wound contamination and exposure of the DHCP’s hands to microorganisms from patients. In addition, bacteria can multiply rapidly in the moist environments underneath gloves, and thus, the hands should be dried thoroughly before donning gloves and washed again immediately after glove removal.
    Types of Gloves
    Because gloves are task-specific, their selection should be based on the type of procedure to be performed (e.g., surgery or patient examination). Sterile surgeon’s gloves must meet standards for sterility assurance established by FDA and are less likely than patient examination gloves to harbor pathogens that could contaminate an operative wound. Appropriate gloves in the correct size should be readily accessible.
    Glove Integrity
    Limited studies of the penetrability of different glove materials under conditions of use have been conducted in the dental environment. Consistent with observations in clinical medicine, leakage rates vary by glove material (e.g., latex, vinyl, and nitrile), duration of use, and type of procedure performed, as well as by manufacturer. The frequency of perforations in surgeon’s gloves used during outpatient oral surgical procedures has been determined to range from 6% to 16%.
    Studies have demonstrated that HCP and DHCP are frequently unaware of minute tears in gloves that occur during use. These studies determined that gloves developed defects in 30 minutes–3 hours, depending on type of glove and procedure. Investigators did not determine an optimal time for changing gloves during procedures.
    During dental procedures, patient examination and surgeon’s gloves commonly contact multiple types of chemicals and materials (e.g., disinfectants and antiseptics, composite resins, and bonding agents) that can compromise the integrity of latex as well as vinyl, nitrile, and other synthetic glove materials. In addition, latex gloves can interfere with the setting of vinyl polysiloxane impression materials, although the setting is apparently not adversely affected by synthetic vinyl gloves. Given the diverse selection of dental materials on the market, dental practitioners should consult glove manufacturers regarding the chemical compatibility of glove materials.
    If the integrity of a glove is compromised (e.g., punctured), it should be changed as soon as possible. Washing latex gloves with plain soap, chlorhexidine, or alcohol can lead to the formation of glove micropunctures and subsequent hand contamination. Because this condition, known as wicking, can allow penetration of liquids through undetected holes, washing gloves is not recommended. After a hand rub with alcohol, the hands should be thoroughly dried before gloving, because hands still wet with an alcohol-based hand hygiene product can increase the risk of glove perforation.
    FDA regulates the medical glove industry, which includes gloves marketed as sterile surgeon’s and sterile or nonsterile patient examination gloves. General-purpose utility gloves are also used in dental health-care settings but are not regulated by FDA because they are not promoted for medical use. More rigorous standards are applied to surgeon’s than to examination gloves. FDA has identified acceptable quality levels (e.g., maximum defects allowed) for glove manufacturers, but even intact gloves eventually fail with exposure to mechanical (e.g., sharps, fingernails, or jewelry) and chemical (e.g., dimethyacrylates) hazards and over time. These variables can be controlled, ultimately optimizing glove performance, by 1) maintaining short fingernails, 2) minimizing or eliminating hand jewelry, and 3) using engineering and work-practice controls to avoid injuries with sharps.
    Sterile Surgeon’s Gloves and Double-Gloving During Oral Surgical Procedures
    Certain limited studies have determined no difference in postoperative infection rates after routine tooth extractions when surgeons wore either sterile or nonsterile gloves. However, wearing sterile surgeon’s gloves during surgical procedures is supported by a strong theoretical rationale. Sterile gloves minimize transmission of microorganisms from the hands of surgical DHCP to patients and prevent contamination of the hands of surgical DHCP with the patient’s blood and body fluids. In addition, sterile surgeon’s gloves are more rigorously regulated by FDA and therefore might provide an increased level of protection for the provider if exposure to blood is likely.
    Although the effectiveness of wearing two pairs of gloves in preventing disease transmission has not been demonstrated, the majority of studies among HCP and DHCP have demonstrated a lower frequency of inner glove perforation and visible blood on the surgeon’s hands when double gloves are worn. In one study evaluating double gloves during oral surgical and dental hygiene procedures, the perforation of outer latex gloves was greater during longer procedures (i.e., >45 minutes), with the highest rate (10%) of perforation occurring during oral surgery procedures. Based on these studies, double gloving might provide additional protection from occupational blood contact. Double gloving does not appear to substantially reduce either manual dexterity or tactile sensitivity. Additional protection might also be provided by specialty products (e.g., orthopedic surgical gloves and glove liners).
    Contact Dermatitis and Latex Hypersensitivity
    Occupationally related contact dermatitis can develop from frequent and repeated use of hand hygiene products, exposure to chemicals, and glove use. Contact dermatitis is classified as either irritant or allergic. Irritant contact dermatitis is common, nonallergic, and develops as dry, itchy, irritated areas on the skin around the area of contact. By comparison, allergic contact dermatitis (type IV hypersensitivity) can result from exposure to accelerators and other chemicals used in the manufacture of rubber gloves (e.g., natural rubber latex, nitrile, and neoprene), as well as from other chemicals found in the dental practice setting (e.g., methacrylates and glutaraldehyde). Allergic contact dermatitis often manifests as a rash beginning hours after contact and, similar to irritant dermatitis, is usually confined to the area of contact.
    Latex allergy (type I hypersensitivity to latex proteins) can be a more serious systemic allergic reaction, usually beginning within minutes of exposure but sometimes occurring hours later and producing varied symptoms. More common reactions include runny nose, sneezing, itchy eyes, scratchy throat, hives, and itchy burning skin sensations. More severe symptoms include asthma marked by difficult breathing, coughing spells, and wheezing; cardiovascular and gastrointestinal ailments; and in rare cases, anaphylaxis and death. The American Dental Association (ADA) began investigating the prevalence of type I latex hypersensitivity among DHCP at the ADA annual meeting in 1994. In 1994 and 1995, approximately 2,000 dentists, hygienists, and assistants volunteered for skin-prick testing. Data demonstrated that 6.2% of those tested were positive for type I latex hypersensitivity. Data from the subsequent 5 years of this ongoing cross-sectional study indicated a decline in prevalence from 8.5% to 4.3%. This downward trend is similar to that reported by other studies and might be related to use of latex gloves with lower allergen content.
    Natural rubber latex proteins responsible for latex allergy are attached to glove powder. When powdered latex gloves are worn, more latex protein reaches the skin. In addition, when powdered latex gloves are donned or removed, latex protein/powder particles become aerosolized and can be inhaled, contacting mucous membranes. As a result, allergic patients and DHCP can experience cutaneous, respiratory, and conjunctival symptoms related to latex protein exposure. DHCP can become sensitized to latex protein with repeated exposure. Work areas where only powder-free, low-allergen latex gloves are used demonstrate low or undetectable amounts of latex allergy-causing proteins and fewer symptoms among HCP related to natural rubber latex allergy. Because of the role of glove powder in exposure to latex protein, NIOSH recommends that if latex gloves are chosen, HCP should be provided with reduced protein, powder-free gloves. Nonlatex (e.g., nitrile or vinyl) powder-free and low-protein gloves are also available. Although rare, potentially life-threatening anaphylactic reactions to latex can occur; dental practices should be appropriately equipped and have procedures in place to respond to such emergencies.
    DHCP and dental patients with latex allergy should not have direct contact with latex-containing materials and should be in a latex-safe environment with all latex-containing products removed from their vicinity. Dental patients with histories of latex allergy can be at risk from dental products (e.g., prophylaxis cups, rubber dams, orthodontic elastics, and medication vials). Any latex-containing devices that cannot be removed from the treatment environment should be adequately covered or isolated. Persons might also be allergic to chemicals used in the manufacture of natural rubber latex and synthetic rubber gloves as well as metals, plastics, or other materials used in dental care. Taking thorough health histories for both patients and DHCP, followed by avoidance of contact with potential allergens can minimize the possibility of adverse reactions. Certain common predisposing conditions for latex allergy include previous history of allergies, a history of spina bifida, urogenital anomalies, or allergies to avocados, kiwis, nuts, or bananas. The following precautions should be considered to ensure safe treatment for patients who have possible or documented latex allergy:
    • Be aware that latent allergens in the ambient air can cause respiratory or anaphylactic symptoms among persons with latex hypersensitivity. Patients with latex allergy can be scheduled for the first appointment of the day to minimize their inadvertent exposure to airborne latex particles.
    • Communicate with other DHCP regarding patients with latex allergy (e.g., by oral instructions, written protocols, and posted signage) to prevent them from bringing latex-containing materials into the treatment area.
    • Frequently clean all working areas contaminated with latex powder or dust.
    • Have emergency treatment kits with latex-free products available at all times.
    • If latex-related complications occur during or after a procedure, manage the reaction and seek emergency assistance as indicated. Follow current medical emergency response recommendations for management of anaphylaxis. 

     

    #16506
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Sterilization and Disinfection of Patient-Care Items
    Patient-care items (dental instruments, devices, and equipment) are categorized as critical, semicritical, or noncritical, depending on the potential risk for infection associated with their intended use. Critical items used to penetrate soft tissue or bone have the greatest risk of transmitting infection and should be sterilized by heat. Semicritical items touch mucous membranes or nonintact skin and have a lower risk of transmission; because the majority of semicritical items in dentistry are heat-tolerant, they also should be sterilized by using heat. If a semicritical item is heat-sensitive, it should, at a minimum, be processed with high-level disinfection.
    Noncritical patient-care items pose the least risk of transmission of infection, contacting only intact skin, which can serve as an effective barrier to microorganisms. In the majority of cases, cleaning, or if visibly soiled, cleaning followed by disinfection with an EPA-registered hospital disinfectant is adequate. When the item is visibly contaminated with blood or OPIM, an EPA-registered hospital disinfectant with a tuberculocidal claim (i.e., intermediate-level disinfectant) should be used. Cleaning or disinfection of certain noncritical patient-care items can be difficult or damage the surfaces; therefore, use of disposable barrier protection of these surfaces might be a preferred alternative.
    FDA-cleared sterilant/high-level disinfectants and EPA-registered disinfectants must have clear label claims for intended use, and manufacturer instructions for use must be followed. A more complete description of the regulatory framework in the United States by which liquid chemical germicides are evaluated and regulated is included.
    Three levels of disinfection, high, intermediate, and low, are used for patient-care devices that do not require sterility and two levels, intermediate and low, for environmental surfaces. The intended use of the patient-care item should determine the recommended level of disinfection. Dental practices should follow the product manufacturer’s directions regarding concentrations and exposure time for disinfectant activity relative to the surface to be disinfected. A summary of sterilization and disinfection methods is included.
    Transporting and Processing Contaminated Critical and Semicritical Patient-Care Items
    DHCP can be exposed to microorganisms on contaminated instruments and devices through percutaneous injury, contact with nonintact skin on the hands, or contact with mucous membranes of the eyes, nose, or mouth. Contaminated instruments should be handled carefully to prevent exposure to sharp instruments that can cause a percutaneous injury. Instruments should be placed in an appropriate container at the point of use to prevent percutaneous injuries during transport to the instrument processing area.

    Instrument processing requires multiple steps to achieve sterilization or high-level disinfection. Sterilization is a complex process requiring specialized equipment, adequate space, qualified DHCP who are provided with ongoing training, and regular monitoring for quality assurance. Correct cleaning, packaging, sterilizer loading procedures, sterilization methods, or high-level disinfection methods should be followed to ensure that an instrument is adequately processed and safe for reuse on patients.  

    #16510
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Receiving, Cleaning, and Decontamination
    Reusable instruments, supplies, and equipment should be received, sorted, cleaned, and decontaminated in one section of the processing area. Cleaning should precede all disinfection and sterilization processes; it should involve removal of debris as well as organic and inorganic contamination. Removal of debris and contamination is achieved either by scrubbing with a surfactant, detergent, and water, or by an automated process (e.g., ultrasonic cleaner or washer-disinfector) using chemical agents. If visible debris, whether inorganic or organic matter, is not removed, it will interfere with microbial inactivation and can compromise the disinfection or sterilization process. After cleaning, instruments should be rinsed with water to remove chemical or detergent residue. Splashing should be minimized during cleaning and rinsing. Before final disinfection or sterilization, instruments should be handled as though contaminated.
    Considerations in selecting cleaning methods and equipment include 1) efficacy of the method, process, and equipment; 2) compatibility with items to be cleaned; and 3) occupational health and exposure risks. Use of automated cleaning equipment (e.g., ultrasonic cleaner or washer-disinfector) does not require presoaking or scrubbing of instruments and can increase productivity, improve cleaning effectiveness, and decrease worker exposure to blood and body fluids. Thus, using automated equipment can be safer and more efficient than manually cleaning contaminated instruments.
    If manual cleaning is not performed immediately, placing instruments in a puncture-resistant container and soaking them with detergent, a disinfectant/detergent, or an enzymatic cleaner will prevent drying of patient material and make cleaning easier and less time-consuming. Use of a liquid chemical sterilant/high-level disinfectant (e.g., glutaraldehyde) as a holding solution is not recommended. Using work-practice controls (e.g., long-handled brush) to keep the scrubbing hand away from sharp instruments is recommended. To avoid injury from sharp instruments, DHCP should wear puncture-resistant, heavy-duty utility gloves when handling or manually cleaning contaminated instruments and devices. Employees should not reach into trays or containers holding sharp instruments that cannot be seen (e.g., sinks filled with soapy water in which sharp instruments have been placed). Work-practice controls should include use of a strainer-type basket to hold instruments and forceps to remove the items. Because splashing is likely to occur, a mask, protective eyewear or face shield, and gown or jacket should be worn.
    Preparation and Packaging
    In another section of the processing area, cleaned instruments and other dental supplies should be inspected, assembled into sets or trays, and wrapped, packaged, or placed into container systems for sterilization. Hinged instruments should be processed open and unlocked. An internal chemical indicator should be placed in every package. In addition, an external chemical indicator (e.g., chemical indicator tape) should be used when the internal indicator cannot be seen from outside the package. For unwrapped loads, at a minimum, an internal chemical indicator should be placed in the tray or cassette with items to be sterilized (see Sterilization of Unwrapped Instruments). Dental practices should refer to the manufacturer’s instructions regarding use and correct placement of chemical indicators (see Sterilization Monitoring). Critical and semicritical instruments that will be stored should be wrapped or placed in containers (e.g., cassettes or organizing trays) designed to maintain sterility during storage.

    Packaging materials (e.g., wraps or container systems) allow penetration of the sterilization agent and maintain sterility of the processed item after sterilization. Materials for maintaining sterility of instruments during transport and storage include wrapped perforated instrument cassettes, peel pouches of plastic or paper, and sterilization wraps (i.e., woven and nonwoven). Packaging materials should be designed for the type of sterilization process being used.  

    #16522
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Sterilization
    The sterilization section of the processing area should include the sterilizers and related supplies, with adequate space for loading, unloading, and cool down. The area can also include incubators for analyzing spore tests and enclosed storage for sterile items and disposable (single-use) items. Manufacturer and local building code specifications will determine placement and room ventilation requirements.
    Sterilization Procedures. Heat-tolerant dental instruments usually are sterilized by 1) steam under pressure (autoclaving), 2) dry heat, or 3) unsaturated chemical vapor. All sterilization should be performed by using medical sterilization equipment cleared by FDA. The sterilization times, temperatures, and other operating parameters recommended by the manufacturer of the equipment used, as well as instructions for correct use of containers, wraps, and chemical or biological indicators, should always be followed.
    Items to be sterilized should be arranged to permit free circulation of the sterilizing agent (e.g., steam, chemical vapor, or dry heat); manufacturer’s instructions for loading the sterilizer should be followed. Instrument packs should be allowed to dry inside the sterilizer chamber before removing and handling. Packs should not be touched until they are cool and dry because hot packs act as wicks, absorbing moisture, and hence, bacteria from hands. The ability of equipment to attain physical parameters required to achieve sterilization should be monitored by mechanical, chemical, and biological indicators. Sterilizers vary in their types of indicators and their ability to provide readings on the mechanical or physical parameters of the sterilization process (e.g., time, temperature, and pressure). Consult with the sterilizer manufacturer regarding selection and use of indicators.
    Steam Sterilization.Among sterilization methods, steam sterilization, which is dependable and economical, is the most widely used for wrapped and unwrapped critical and semicritical items that are not sensitive to heat and moisture. Steam sterilization requires exposure of each item to direct steam contact at a required temperature and pressure for a specified time needed to kill microorganisms. Two basic types of steam sterilizers are the gravity displacement and the high-speed prevacuum sterilizer.
    The majority of tabletop sterilizers used in a dental practice are gravity displacement sterilizers, although prevacuum sterilizers are becoming more widely available. In gravity displacement sterilizers, steam is admitted through steam lines, a steam generator, or self-generation of steam within the chamber. Unsaturated air is forced out of the chamber through a vent in the chamber wall. Trapping of air is a concern when using saturated steam under gravity displacement; errors in packaging items or overloading the sterilizer chamber can result in cool air pockets and items not being sterilized.
    Prevacuum sterilizers are fitted with a pump to create a vacuum in the chamber and ensure air removal from the sterilizing chamber before the chamber is pressurized with steam. Relative to gravity displacement, this procedure allows faster and more positive steam penetration throughout the entire load. Prevacuum sterilizers should be tested periodically for adequate air removal, as recommended by the manufacturer. Air not removed from the chamber will interfere with steam contact. If a sterilizer fails the air removal test, it should not be used until inspected by sterilizer maintenance personnel and it passes the test. Manufacturer’s instructions, with specific details regarding operation and user maintenance information, should be followed.
    Unsaturated Chemical-Vapor Sterilization. Unsaturated chemical-vapor sterilization involves heating a chemical solution of primarily alcohol with 0.23% formaldehyde in a closed pressurized chamber. Unsaturated chemical vapor sterilization of carbon steel instruments (e.g., dental burs) causes less corrosion than steam sterilization because of the low level of water present during the cycle. Instruments should be dry before sterilizing. State and local authorities should be consulted for hazardous waste disposal requirements for the sterilizing solution.
    Dry-Heat Sterilization.Dry heat is used to sterilize materials that might be damaged by moist heat (e.g., burs and certain orthodontic instruments). Although dry heat has the advantages of low operating cost and being noncorrosive, it is a prolonged process and the high temperatures required are not suitable for certain patient-care items and devices.
    Dry-heat sterilizers used in dentistry include static-air and forced-air types.
    • The static-air type is commonly called an oven-type sterilizer. Heating coils in the bottom or sides of the unit cause hot air to rise inside the chamber through natural convection.
    • The forced-air type is also known as a rapid heat-transfer sterilizer. Heated air is circulated throughout the chamber at a high velocity, permitting more rapid transfer of energy from the air to the instruments, thereby reducing the time needed for sterilization. 

     

    #16524
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Sterilization of Unwrapped Instruments.An unwrapped cycle (sometimes called flash sterilization) is a method for sterilizing unwrapped patient-care items for immediate use. The time required for unwrapped sterilization cycles depends on the type of sterilizer and the type of item (i.e., porous or nonporous) to be sterilized. The unwrapped cycle in tabletop sterilizers is preprogrammed by the manufacturer to a specific time and temperature setting and can include a drying phase at the end to produce a dry instrument with much of the heat dissipated. If the drying phase requirements are unclear, the operation manual or manufacturer of the sterilizer should be consulted. If the unwrapped sterilization cycle in a steam sterilizer does not include a drying phase, or has only a minimal drying phase, items retrieved from the sterilizer will be hot and wet, making aseptic transport to the point of use more difficult. For dry-heat and chemical-vapor sterilizers, a drying phase is not required.
    Unwrapped sterilization should be used only under certain conditions: 1) thorough cleaning and drying of instruments precedes the unwrapped sterilization cycle; 2) mechanical monitors are checked and chemical indicators used for each cycle; 3) care is taken to avoid thermal injury to DHCP or patients; and 4) items are transported aseptically to the point of use to maintain sterility. Because all implantable devices should be quarantined after sterilization until the results of biological monitoring are known, unwrapped or flash sterilization of implantable items is not recommended.
    Critical instruments sterilized unwrapped should be transferred immediately by using aseptic technique, from the sterilizer to the actual point of use. Critical instruments should not be stored unwrapped. Semicritical instruments that are sterilized unwrapped on a tray or in a container system should be used immediately or within a short time. When sterile items are open to the air, they will eventually become contaminated. Storage, even temporary, of unwrapped semicritical instruments is discouraged because it permits exposure to dust, airborne organisms, and other unnecessary contamination before use on a patient. A carefully written protocol for minimizing the risk of contaminating unwrapped instruments should be prepared and followed.
    Other Sterilization Methods. Heat-sensitive critical and semicritical instruments and devices can be sterilized by immersing them in liquid chemical germicides registered by FDA as sterilants. When using a liquid chemical germicide for sterilization, certain poststerilization procedures are essential. Items need to be 1) rinsed with sterile water after removal to remove toxic or irritating residues; 2) handled using sterile gloves and dried with sterile towels; and 3) delivered to the point of use in an aseptic manner. If stored before use, the instrument should not be considered sterile and should be sterilized again just before use. In addition, the sterilization process with liquid chemical sterilants cannot be verified with biological indicators.
    Because of these limitations and because liquid chemical sterilants can require approximately 12 hours of complete immersion, they are almost never used to sterilize instruments. Rather, these chemicals are more often used for high-level disinfection. Shorter immersion times (12–90 minutes) are used to achieve high-level disinfection of semicritical instruments or items. These powerful, sporicidal chemicals (e.g., glutaraldehyde, peracetic acid, and hydrogen peroxide) are highly toxic. Manufacturer instructions (e.g., regarding dilution, immersion time, and temperature) and safety precautions for using chemical sterilants/high-level disinfectants must be followed precisely. These chemicals should not be used for applications other than those indicated in their label instructions. Misapplications include use as an environmental surface disinfectant or instrument-holding solution.
    When using appropriate precautions (e.g., closed containers to limit vapor release, chemically resistant gloves and aprons, goggles, and face shields), glutaraldehyde-based products can be used without tissue irritation or adverse health effects. However, dermatologic, eye irritation, respiratory effects, and skin sensitization have been reported. Because of their lack of chemical resistance to glutaraldehydes, medical gloves are not an effective barrier. Other factors might apply (e.g., room exhaust ventilation or 10 air exchanges/hour) to ensure DHCP safety. For all of these reasons, using heat-sensitive semicritical items that must be processed with liquid chemical germicides is discouraged; heat-tolerant or disposable alternatives are available for the majority of such items.
    Low-temperature sterilization with ethylene oxide gas (ETO) has been used extensively in larger health-care facilities. Its primary advantage is the ability to sterilize heat- and moisture-sensitive patient-care items with reduced deleterious effects. However, extended sterilization times of 10–48 hours and potential hazards to patients and DHCP requiring stringent health and safety requirements make this method impractical for private-practice settings. Handpieces cannot be effectively sterilized with this method because of decreased penetration of ETO gas flow through a small lumen. Other types of low-temperature sterilization (e.g., hydrogen peroxide gas plasma) exist but are not yet practical for dental offices.

    Bead sterilizers have been used in dentistry to sterilize small metallic instruments (e.g., endodontic files). FDA has determined that a risk of infection exists with these devices because of their potential failure to sterilize dental instruments and has required their commercial distribution cease unless the manufacturer files a premarket approval application. If a bead sterilizer is employed, DHCP assume the risk of employing a dental device FDA has deemed neither safe nor effective.  

    #16530
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Sterilization Monitoring. Monitoring of sterilization procedures should include a combination of process parameters, including mechanical, chemical, and biological. These parameters evaluate both the sterilizing conditions and the procedure’s effectiveness.
    Mechanical techniques for monitoring sterilization include assessing cycle time, temperature, and pressure by observing the gauges or displays on the sterilizer and noting these parameters for each load. Some tabletop sterilizers have recording devices that print out these parameters. Correct readings do not ensure sterilization, but incorrect readings can be the first indication of a problem with the sterilization cycle.
    Chemical indicators, internal and external, use sensitive chemicals to assess physical conditions (e.g., time and temperature) during the sterilization process. Although chemical indicators do not prove sterilization has been achieved, they allow detection of certain equipment malfunctions, and they can help identify procedural errors. External indicators applied to the outside of a package (e.g., chemical indicator tape or special markings) change color rapidly when a specific parameter is reached, and they verify that the package has been exposed to the sterilization process. Internal chemical indicators should be used inside each package to ensure the sterilizing agent has penetrated the packaging material and actually reached the instruments inside. A single-parameter internal chemical indicator provides information regarding only one sterilization parameter (e.g., time or temperature). Multiparameter internal chemical indicators are designed to react to >2 parameters (e.g., time and temperature; or time, temperature, and the presence of steam) and can provide a more reliable indication that sterilization conditions have been met. Multiparameter internal indicators are available only for steam sterilizers (i.e., autoclaves).
    Because chemical indicator test results are received when the sterilization cycle is complete, they can provide an early indication of a problem and where in the process the problem might exist. If either mechanical indicators or internal or external chemical indicators indicate inadequate processing, items in the load should not be used until reprocessed.
    Biological indicators (BIs) (i.e., spore tests) are the most accepted method for monitoring the sterilization process because they assess it directly by killing known highly resistant microorganisms (e.g., Geobacillus or Bacillus species), rather than merely testing the physical and chemical conditions necessary for sterilization. Because spores used in BIs are more resistant and present in greater numbers than the common microbial contaminants found on patient-care equipment, an inactivated BI indicates other potential pathogens in the load have been killed.
    Correct functioning of sterilization cycles should be verified for each sterilizer by the periodic use (at least weekly) of BIs. Every load containing implantable devices should be monitored with such indicators, and the items quarantined until BI results are known. However, in an emergency, placing implantable items in quarantine until spore tests are known to be negative might be impossible.
    Manufacturer’s directions should determine the placement and location of BI in the sterilizer. A control BI, from the same lot as the test indicator and not processed through the sterilizer, should be incubated with the test BI; the control BI should yield positive results for bacterial growth.
    In-office biological monitoring is available; mail-in sterilization monitoring services (e.g., from private companies or dental schools) can also be used to test both the BI and the control. Although some DHCP have expressed concern that delays caused by mailing specimens might cause false-negatives, studies have determined that mail delays have no substantial effect on final test results.
    Procedures to follow in the event of a positive spore test have been developed. If the mechanical (e.g., time, temperature, and pressure) and chemical (i.e., internal or external) indicators demonstrate that the sterilizer is functioning correctly, a single positive spore test probably does not indicate sterilizer malfunction. Items other than implantable devices do not necessarily need to be recalled; however the spore test should be repeated immediately after correctly loading the sterilizer and using the same cycle that produced the failure. The sterilizer should be removed from service, and all records reviewed of chemical and mechanical monitoring since the last negative BI test. Also, sterilizer operating procedures should be reviewed, including packaging, loading, and spore testing, with all persons who work with the sterilizer to determine whether operator error could be responsible. Overloading, failure to provide adequate package separation, and incorrect or excessive packaging material are all common reasons for a positive BI in the absence of mechanical failure of the sterilizer unit. A second monitored sterilizer in the office can be used, or a loaner from a sales or repair company obtained, to minimize office disruption while waiting for the repeat BI.
    If the repeat test is negative and chemical and mechanical monitoring indicate adequate processing, the sterilizer can be put back into service. If the repeat BI test is positive, and packaging, loading, and operating procedures have been confirmed as performing correctly, the sterilizer should remain out of service until it has been inspected, repaired, and rechallenged with BI tests in three consecutive empty chamber sterilization cycles. When possible, items from suspect loads dating back to the last negative BI should be recalled, rewrapped, and resterilized.
    A more conservative approach has been recommended in which any positive spore test is assumed to represent sterilizer malfunction and requires that all materials processed in that sterilizer, dating from the sterilization cycle having the last negative biologic indicator to the next cycle indicating satisfactory biologic indicator results, should be considered nonsterile and retrieved, if possible, and reprocessed or held in quarantine until the results of the repeat BI are known. This approach is considered conservative because the margin of safety in steam sterilization is sufficient enough that infection risk, associated with items in a load indicating spore growth, is minimal, particularly if the item was properly cleaned and the temperature was achieved (e.g., as demonstrated by acceptable chemical indicator or temperature chart). Published studies are not available that document disease transmission through a nonretrieved surgical instrument after a steam sterilization cycle with a positive biological indicator. This more conservative approach should always be used for sterilization methods other than steam (e.g., dry heat, unsaturated chemical vapor, ETO, or hydrogen peroxide gas plasma).

    Results of biological monitoring should be recorded and sterilization monitoring records (i.e., mechanical, chemical, and biological) retained long enough to comply with state and local regulations. Such records are a component of an overall dental infection-control program (see Program Evaluation).  

    #16535
    drsnehamaheshwari
    Offline
    Registered On: 16/03/2013
    Topics: 110
    Replies: 239
    Has thanked: 0 times
    Been thanked: 0 times
    Storage of Sterilized Items and Clean Dental Supplies
    The storage area should contain enclosed storage for sterile items and disposable (single-use) items. Storage practices for wrapped sterilized instruments can be either date- or event-related. Packages containing sterile supplies should be inspected before use to verify barrier integrity and dryness. Although some health-care facilities continue to date every sterilized package and use shelf-life practices, other facilities have switched to event-related practices. This approach recognizes that the product should remain sterile indefinitely, unless an event causes it to become contaminated (e.g., torn or wet packaging). Even for event-related packaging, minimally, the date of sterilization should be placed on the package, and if multiple sterilizers are used in the facility, the sterilizer used should be indicated on the outside of the packaging material to facilitate the retrieval of processed items in the event of a sterilization failure. If packaging is compromised, the instruments should be recleaned, packaged in new wrap, and sterilized again.
    Clean supplies and instruments should be stored in closed or covered cabinets, if possible. Dental supplies and instruments should not be stored under sinks or in other locations where they might become wet.
    Environmental Infection Control
    In the dental operatory, environmental surfaces (i.e., a surface or equipment that does not contact patients directly) can become contaminated during patient care. Certain surfaces, especially ones touched frequently (e.g., light handles, unit switches, and drawer knobs) can serve as reservoirs of microbial contamination, although they have not been associated directly with transmission of infection to either DHCP or patients. Transfer of microorganisms from contaminated environmental surfaces to patients occurs primarily through DHCP hand contact. When these surfaces are touched, microbial agents can be transferred to instruments, other environmental surfaces, or to the nose, mouth, or eyes of workers or patients. Although hand hygiene is key to minimizing this transferal, barrier protection or cleaning and disinfecting of environmental surfaces also protects against health-care–associated infections.
    Environmental surfaces can be divided into clinical contact surfaces and housekeeping surfaces. Because housekeeping surfaces (e.g., floors, walls, and sinks) have limited risk of disease transmission, they can be decontaminated with less rigorous methods than those used on dental patient-care items and clinical contact surfaces. Strategies for cleaning and disinfecting surfaces in patient-care areas should consider the 1) potential for direct patient contact; 2) degree and frequency of hand contact; and 3) potential contamination of the surface with body substances or environmental sources of microorganisms (e.g., soil, dust, or water).

    Cleaning is the necessary first step of any disinfection process. Cleaning is a form of decontamination that renders the environmental surface safe by removing organic matter, salts, and visible soils, all of which interfere with microbial inactivation. The physical action of scrubbing with detergents and surfactants and rinsing with water removes substantial numbers of microorganisms. If a surface is not cleaned first, the success of the disinfection process can be compromised. Removal of all visible blood and inorganic and organic matter can be as critical as the germicidal activity of the disinfecting agent. When a surface cannot be cleaned adequately, it should be protected with barriers.  

Viewing 15 posts - 1 through 15 (of 43 total)
  • You must be logged in to reply to this topic.